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LESSON 72 – Geometric 
Representations of 
Complex Numbers

Argand Diagram

Modulus and Argument

Polar form

Argand Diagram

Complex numbers can 
be shown Geometrically 
on an Argand diagram

The real part of the 
number is represented 
on the x-axis and the 
imaginary part on the y.
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Modulus of a complex number

A complex number can 
be represented by the 
position vector.

The Modulus of a 
complex number is the 
distance from the origin 
to the point.

Can you generalise this?

|z| = √(x2+y2)
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How many complex numbers in the form a 
+ bi can you find with integer values of a 
and b that share the same modulus as the 
number above.

Could you mark all of the points?

What familiar shape would you draw?(more 
of LOCI later!)
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Modulus questions

Find

a) |3 + 4i| = 5

b) |5 – 12i| = 13

c) |6 – 8i| = 10

d) |-24 – 10i| = 26

Find the distance between the first two complex 
numbers above. It may help to sketch a diagram

Example

Example - Solution
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The argument of a complex number

The argument of a complex number is the angle the 
line makes with the positive x-axis.
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Can you generalise this? 
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It is really important that you sketch a diagram 
before working out the argument!!

The argument of a complex number

 Calculate the modulus and argument of the 
following complex numbers. (Hint, it helps to draw 
a diagram)

1) 3 + 4i |z| = √(32+42) = 5

arg z = inv tan (4/3)

= 0.927 

2) 5 – 5i |z| = √(52+52) = 5√2

arg z = inv tan (5/-5)

= -π/4

3) -2√3 + 2i |z| = √((2√3)2+22) = 4

arg z = inv tan (2/-2√3)

= 5π/6

The Polar form of a complex number

 So far we have plotted the position of a complex 
number on the Argand diagram by going horizontally 
on the real axis and vertically on the imaginary. 

 This is just like plotting co-ordinates on an x,y axis

However it is also possible to locate the position of a 
complex number by the distance travelled from the 
origin (pole), and the angle turned through from the 
positive x-axis. 

 These are called “Polar coordinates”
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The Polar form of a complex number

(x,y) (r, θ)

cosθ = x/r, sinθ = y/r 

x = r cosθ, y = r sinθ, 
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r is the 
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Converting from Cartesian to Polar

Convert the following from Cartesian to Polar

i) (1,1) =

ii) (-√3,1) =

iii) (-4,-4√3) =

Im
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Converting from Cartesian to Polar

Convert the following from Cartesian to Polar

i) (1,1) = (√2,π/4)

ii) (-√3,1) = (2,5π/6)

iii) (-4,-4√3) = (8,-2π/3)
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Converting from Polar to Cartesian

Convert the following from Polar to Cartesian

i) (4,π/3) = 

ii) (3√2,-π/4) =

iii) (6√2,3π/4) =

Im

x

y

Re

r

θ

    , , cos , sinr x y r r  

Converting from Polar to Cartesian

Convert the following from Polar to Cartesian

i) (4,π/3) = (2,2√3)

ii) (3√2,-π/4) = (3,-3)

iii) (6√2,3π/4) = (-6,6)
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θ

    , , cos , sinr x y r r  
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4

-3 Real Axis

Imaginary 

Axis
z =-3 + 4i

z = -3 + 4i is in Quadrant II

x = -3   and    y = 4
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4

-3

z =-3 + 4i

5r

 

Find the reference angle 

() by solving

x

y
tan

3

4
tan




3

4
tan 1

 13.53

4

-3

z =-3 + 4i

5r

 
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Find r:    2
2

13 r 2r

4

-3 Real Axis

Imaginary 

Axis

i3

3

1
2

Find the reference angle () by 

solving

x

y
tan

3

1
tan

30

3

1
2




3

11  tan
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3

1
2




 33030360
  sinicosrz 

  3303302 sinicosz
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Write in standard (rectangular) form.
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Write in standard (rectangular) form.
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Example:

Convert z = 3 cis 55° to rectangular form.

Convert  z = -2 – 3i to polar form.

Example:

What is the absolute value of the following complex numbers:

z i 3 2

z  4
2

3
cis



Multiply:    3 165 4 45cis cis
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Do you want to go thru that every 
time?

     rcis tcis r t cis       

Multiply:   4 25 6 35cis cis

Divide:
3 165

4 45

cis

cis
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

1 2 1 2z z z z   1 2 1 2z z z z  

1 2 1 2z z z z   1 2 1 2z z z z  

 2 2 2 2

1 2 1 2 1 2z z z z 2 z z    

(Triangle inequality)

22 2Pr oof :z a ib,zz (a ib)(a ib) a b z       

Properties of modulus
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     1 2 n 1 2 nArg z .z ....z Arg z Arg z .... Arg(z )   

     
1

Arg z Arg z ,Arg Arg z
z

 
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Arg(purely real) = 0 or  or 2n and vice versa

Arg(purely imaginary) =  or or 2n 1
2 2 2

  
  and vice 

versa

Properties of Argument


