Lesson 70

Further Work with Taylor and Maclaurin Series

In this section, we will learn:

- (1) The series $(1 + x)^k$
- (2) Error on Taylor Polynomials

TAYLOR SERIES

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

$$= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

TAYLOR SERIES

For the special case a = 0, the Taylor series becomes:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
$$= f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

MACLAURIN SERIES
This case arises frequently
enough that it is given the special
name Maclaurin series.

TAYLOR & MACLAURIN SERIES

Find the Maclaurin series for $f(x) = (1 + x)^k$, where k is any real number.

TAYLOR & MACLAURIN SERIES Arranging our work in columns, we have: $f(x) = (1+x)^k \qquad \qquad f(0) = 1$ $f'(x) = k(1+x)^{k-1} \qquad \qquad f'(0) = k$

$$f'(x) = k(1+x)^{k-1}$$

$$f''(x) = k(k-1)(1+x)^{k-2}$$

$$f'''(x) = k(k-1)(k-2)(1+x)^{k-3}$$

$$f'''(0) = k(k-1)$$

$$f'''(0) = k(k-1)$$

$$f'''(0) = k(k-1)$$

$$f'''(0) = k(k-1)(k-2)$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$f^{(n)} = k(k-1)\cdots(k-n+1)(1+x)^{k-n}$$

$$f^{(n)}(0) = k(k-1)\cdots(k-n+1)$$

BINOMIAL SERIES

Thus, the Maclaurin series of $f(x) = (1 + x)^k$ is:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{k(k-1)\cdots(k-n+1)}{n!} x^n$$

This series is called the binomial series.

TAYLOR & MACLAURIN SERIES

If its nth term is a_n , then

$$\frac{a_{n+1}}{a_n}$$

$$= \frac{k(k-1)\cdots(k-n+1)(k-n)x^{n+1}}{(n+1)!} \cdot \frac{n!}{k(k-1)\cdots(k-n+1)x^n}$$

$$= \frac{|k-n|}{n+1} |x| = \frac{\left|1 - \frac{k}{n}\right|}{1 + \frac{1}{n}} |x| \longrightarrow |x| \qquad \text{as } n \to \infty$$

TAYLOR & MACLAURIN SERIES

Therefore, by the Ratio Test, the binomial series converges if |x| < 1and diverges if |x| > 1.

BINOMIAL COEFFICIENTS.

The traditional notation for the coefficients in the binomial series is:

$$\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$$

 These numbers are called the binomial coefficients.

THE BINOMIAL SERIES

If k is any real number and |x| < 1, then

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n$$

$$= 1 + kx + \frac{k(k-1)}{2!} x^2$$

$$+ \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$$

TAYLOR & MACLAURIN SERIES

Though the binomial series always converges when |x| < 1, the question of whether or not it converges at the endpoints, ± 1 , depends on the value of k.

• It turns out that the series converges at 1 if $-1 < k \le 0$ and at both endpoints if $k \ge 0$.

TAYLOR & MACLAURIN SERIES

Find the Maclaurin series for the function

$$f(x) = \frac{1}{\sqrt{4 - x}}$$

and its radius of convergence.

TAYLOR & MACLAURIN SERIES

We write f(x) in a form where we can use the binomial series:

$$\frac{1}{\sqrt{4-x}} = \frac{1}{\sqrt{4\left(1-\frac{x}{4}\right)}}$$
$$= \frac{1}{2\sqrt{1-\frac{x}{4}}} = \frac{1}{2}\left(1-\frac{x}{4}\right)^{-1/2}$$

TAYLOR & MACLAURIN SERIES

Using the binomial series with $k = -\frac{1}{2}$ and with x replaced by -x/4, we have:

$$\frac{1}{\sqrt{4-x}}$$

$$= \frac{1}{2} \left(1 - \frac{x}{4} \right)^{-1/2}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} {\binom{-\frac{x}{4}}{n}}^n$$

TAYLOR & MACLAURIN SERIES

$$= \frac{1}{2} \left[1 + \left(-\frac{1}{2} \right) \left(-\frac{x}{4} \right) + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{2!} \left(-\frac{x}{4} \right)^{2} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(-\frac{5}{2} \right)}{3!} \left(-\frac{x}{4} \right)^{3} + \dots + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(-\frac{5}{2} \right) \dots \left(-\frac{1}{2} - n + 1 \right)}{n!} \left(-\frac{x}{4} \right)^{n} + \dots \right]$$

TAYLOR & MACLAURIN SERIES

$$= \frac{1}{2} \left[1 + \frac{1}{8}x + \frac{1 \cdot 3}{2!8^2}x^2 + \frac{1 \cdot 3 \cdot 5}{3!8^3}x^3 + \cdots + \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!8^n}x^n + \cdots \right]$$

- We know that this series converges when |-x/4| < 1, that is, |x| < 4.
- So, the radius of convergence is R = 4.

SUMMARY

$$(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \dots \qquad R = 1$$

Further Examples

 Use the binomial series to expand the function as a power function. State the radius of convergence.

(a)
$$y = \frac{1}{(1+x)^2}$$

(b)
$$y = \frac{1}{\sqrt{2-x}}$$

Further Examples

 Use the binomial series to expand the function as a power function. State the radius of convergence.

(a)
$$y = \sqrt{1+x}$$

(b)
$$y = \frac{1}{(1+x)^4}$$

(c)
$$y = \frac{1}{(2+x)^3}$$

(d)
$$y = \sqrt[3]{(1-x)^2}$$

Lagrange Form (for error in Taylor Polynomials

Similar to the truncation error for an alternating series, finding the error using Taylor's Formula for the remainder is essentially given by the next term in the series:

$$R_n(x) = \frac{f^{(n+1)}(t)}{(n+1)!} (x-a)^{n+1}, a \le t \le x$$

E \	/ A	MP	 444

- Approximate the value of In(1.1) using a third degree Taylor polynomial and determine the maximum error in this approximation
- Choose f(x), choose "center", take successive derivatives, evaluate
- To evaluate R₃(1.1), choose a value of t that maximizes the error (1≤t≤1.10)

EXAMPLE #2

- Approximate cos(0.1) using a 4th degree
 Taylor polynomial and find the associated
 LaGrange remainder, or error bound
- Choose f(x), choose "center", take successive derivatives, evaluate
- To evaluate R₄(0.1), choose a value of sin(t) or cos(t) that maximizes the error (0≤t≤x)

Page 160, Oxford Text Q1-10