Lesson 68 — Introduction to Taylor &
Maclaurin Series

HL Math - Santowski
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RECAP

» From last lesson:

» (1) We CAN model a function using a power series
» (2) These power series are based upon geometric series

» (3) Therefore, the functions that we can “work with” at this

stage are variations of the function: f(x)

1-x

» Question =» Can we develop a more general approach
to developlng a series in order to represent ANY
function?

Suppose we wanted to find a fourth degree polynomial of
the form: P(X)=a,+a,Xx+a,Xx* +a,x> +a,x"

that approximates the behavior of f (X) = In(X +1) at x=0

BUT HOW do we do
that???
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» We are going to start by making two assumptions:

» (a) Let's assume that the function y = f(x) does in
fact have a power series representation about x = a
(in this case, f(x) = In(x + 1) atx =0)

» (b) Next we will assume that the function y = f(x) has
derivatives of every order and that we can in fact find
them all

Suppose we wanted to find a fourth degree polynomial of the

form: P(x)=a,+ax+a,x* +a,x> +a,x*

that approximates the behavior of ~ f (x) = In(x +1) at x=0

If we make P (0) =f (0) , and the first, second, third and

fourth derivatives the same, then we would have a pretty good

approximation.

f(x)=In(x+1) P(x)=a,+ax+a,x’+ax>+a,x*
f(x)=In(x+1) P(X)=a, +ax+a,x’ +ax +a,x"
f(O=m@=0  P(0)=a —
@ S0 =In(x+1)

g(x):(] £ A o%




f(x)=In(x+1)  P(x)=a+ax+ax +ax’+ax’

P'(x) =a+ 28?X+3a3x2 +4a4x3

@ flx)=h(x+1)

P(0)=a, —[a =]
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g(x)=0+14 /
I /
f(x)=In(x+1) P(x)=a,+ax+a,x’ +ax’ +a,x"
"(x)=—— P’ (X) = 28, + 6a;x+12a,%°
(1+x)2 :
f”(0)=—}=_1 P"(O):Za2 —| 3, :—E
1@ f(x)=In(x+1) /
g(x):o'le—%xZ N o=
f(x)=In(x+1) P(x)=a,+ax+a,x’+ax’ +a,x"
N p—
f"(x)=2 oy P"(x)=6a, +24a,x ,
-2 Pr(0)=6a— a=g
@ flx)=ln(x+1)
glx)=0+1x— 124 2,4 3F Il
/’. 05




F(0)=I(x+D) P(x)=2,+ax+a +ax rax'
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1
@ (x) =_5W P(4) (X) —24a,
6
) () = __6
1(0)=-6 P (0)= 24, ==, =~
//
© flx)=In(x+1)
glx) =0+1x— é—x2+ %Xa_ % 4

P(x)=a,+ax+a,x’ +ax’ +a,x’  f(x)=In(x+1)

P(x):0+lx—%xz+§x3—%x"
2 3 4
P(x):0+x—%+%—% f(x)=In(x+1)

If we plot both functions, we see
that near zero the functions match
very well!

Our polynomial: o+1xflx2+zx3,ixa
2 6 24
£ £ @
has the form:  f(0)+ f’(0)><+¥x2 +$x3+%x"

o! 1 2! 3! 41
This pattern occurs no
matter what the original

function was!




Maclaurin Series:

(generated by f (x) atx=0)

@ @0,
3

P(x)=f(0)+ f'(0)x+

If we want to center the series (and it’s graph) at some point other than zero, we

get the Taylor Series:

Taylor Series:

(generated by f (x) atx=a)
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f"(a f"(a
P(x)= f(a)+f’(a)(x—a)+—2(! )(x—a)2+73(! )(x—a)3+
5
example: Y = COS X
f(x)=cosx f(0)=1 f"(x)=sinx f"(0)=0
f'(x)=-sinx {'(0)=0 £ (x)=cosx £1(0)=1
f"(x)=-cosx f"(0)=-1
P(>():1+0)<—K+0i E %—E
20 31 41 51 g
p()=1- X X X X X
21 41 6! 8! 10!
~ 2oxt x® xE x©
y =C0S X P<X):1_E+I_E+§_Tm

/ /

-1

T

The more terms we add, the better our approximation.




example: Yy = COS (2)()

Rather than start from scratch, we can use the function that we already know:

P(X):l_(2x)2+(2x)4 (Zx)6 (2>()B (2x)10
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example: Y =C0S(X) at x:%
f(x)=cosx f(gjzo f7(x)=sinx f”’(’é]:l
f'(x)=—sinx f'[f =-1
2 £ (x)=cos x f‘”[%):O
" —_ ” E _
f"(x)=—cosx f[zj 0
2 3
P(x)=0-1 x-Z +2 x-Z +1 G
2) 2! 2 3! 2
3 5
)
4 2 2
P(x) —(x—fJ+ TR + -

Further Examples

» Now let’'s work with:
» (1) y=sin(x)
» )y =ex

» And develop the Taylor Polynomial for these two
functions




