

2

POWER SERIES

- So, what is a power series OR what do we mean by the term "power series"

What are Power Series?

It's convenient to think of a power series as an *infinite polynomial*:

Polynomials:
$$2 - x + 3x^2 - 12x^2$$

 $1 + (x - 1) + 3(x - 1)^2 - (\frac{1}{4})(x - 1)^3$
Power Series: $1 + 2x + 3x^2 + 4x^3 + 5x^4 + ... = \sum_{n=0}^{\infty} (k + 1)x^n$
 $1 - \frac{(x + 3)}{3!} + \frac{(x + 3)^2}{5!} - \frac{(x + 3)^2}{7!} + \frac{(x + 3)^4}{9!} - ... = \sum_{n=0}^{\infty} (-1)^4 (x - 1)^4$

4

OBJECTIVES

. In the next few lessons, we will introduce a few concepts:

- conditions for convergence of a power series

radius of convergence of a power series
representation of functions with a power series

After working through these lessons and completing a sufficient number of exercises on paper, you should be able to

determine the radius of convergence of that series
expand a function in a power series

In general. . .

Definition: A power series is a (family of) series of the form

$\sum_{n=1}^{\infty} a_n (x-x_0)^n.$

In this case, we say that the power series is based at x_0 or that it is centered at x_0 .

What can we say about convergence of power series?

A great deal, actually.

Checking for Convergence

Checking on the convergence of

 $1 + 2x + 3x^{2} + 4x^{3} + 5x^{4} + \ldots = \sum_{k=0}^{\infty} (k+1)x^{k}$

Summary - Power Series

Definitions

Interval of Convergence: The interval of x values where the series converges. Radius of Convergence (R): Half the length of the interval of convergence.

- The series only converges at x = a. (R = 0)
 The series converges for all x values. (R = ∞)
- 3) The series converges for some interval of x.

$$|x-a| < R$$

(a - R < x < a + R)

The end values of the interval must be tested for convergence. The use of the Ratio test is recommended when finding the radius of convergence and the interval of convergence.

Example #1 - Power Series	
$\bullet \sum_{n=0}^{\infty} \frac{(-1)^n n(x+3)^n}{4^n}$	$\lim_{n \to \infty} \left \frac{(-1)(n+1)(x+3)}{4n} \right = \frac{1}{4} x+3 $
Ratio Test: Convergence for $L < 1$	
$\frac{1}{4} x+3 < 1$ $ x+3 < 4$ Radius of Convergence $R = 4$	Interval of Convergence: -4 < x + 3 < 4 -7 < x < 1 End points need to be tested.
	۲

- http://www.millersville.edu/~bikenaga/calculus/intervals-of-convergence/intervals-of-convergence.html
 http://blogs.ub.ca/infiniteseriesmodule/units/unit-3-power-series/power-series/a-motivating-problem-for-power-series/
- https://www.youtube.com/watch?v=Sw7PcBTgE0A
- https://www.youtube.com/watch?v=XWGPjZK0Yzw