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Lesson 64 – Ratio Test & 

Comparison Tests

Math HL – Calculus Option

Series known to converge or diverge

1. A geometric series with | r | <1 converges

2. A repeating decimal converges

3. Telescoping series converge

A necessary condition for convergence:

Limit as n goes to infinity for nth term in sequence is 0.

nth term test for divergence:

If the limit as n goes to infinity for the nth term is not 0, the 

series DIVERGES!
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Convergent and Divergent Series

 If the infinite series has a sum, or 
limit, the series is convergent. 

 If the series is not convergent, it is 
divergent.

Ways To Determine 

Convergence/Divergence

 1.  Arithmetic – since no sum 
exists, it diverges

 2.  Geometric:

 If |r| > 1, diverges

 If |r| < 1, converges since the sum 
exists

 3.  Ratio Test (discussed in a few 
minutes)
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Example

Determine whether each series is 
convergent or divergent.

 1/8 + 3/20 + 9/50 + 27/125 + . . .

 18.75+17.50+16.25+15.00+ . . .

 65 + 13 + 13/5 + 13/25 . . .

Example

Determine whether each series is 
convergent or divergent.

 1/8 + 3/20 + 9/50 + 27/125 + . . .
 r=6/5  |r|>1  divergent

 18.75+17.50+16.25+15.00+ . . .
 Arithmetic series  divergent

 65 + 13 + 13/5 + 13/25 . . .
 r=1/5  |r|<1  convergent
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Analytical Tools – Ratio Test

 When a series is neither arithmetic 
or geometric, it is more difficult to 
determine whether the series is 
convergent or divergent.

 So we need a variety of different 
analytical tools to help us decide 
whether a series converges or 
diverges

Ratio Test

In the ratio test, we will use a ratio of an and an+1

to determine the convergence or divergence of a 
series.
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Ex 1: Test for convergence or divergence of:
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Ex 2: Test for convergence or divergence of:
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Ex 3: Test for convergence or divergence of:
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Since this ratio is 1, 
the test is 
inconclusive.

Coefficient of n2 is 1
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Example 4

 Use the ratio test to determine if the 
series is convergent or divergent.

1/2 + 2/4 + 3/8 + 4/16 + . . . 

Example 4

 Use the ratio test to determine if the 
series is convergent or divergent.

1/2 + 2/4 + 3/8 + 4/16 + . . . 
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Example 5

 Use the ratio test to determine if the 
series is convergent or divergent.

1/2 + 2/3 + 3/4 + 4/5 + . . . 

Example 5

 Use the ratio test to determine if the 
series is convergent or divergent.

1/2 + 2/3 + 3/4 + 4/5 + . . . 
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Example 6

 Use the ratio test to determine if the 
series is convergent or divergent.

2 + 3/2 + 4/3 + 5/4 + . . . 

Example 6

 Use the ratio test to determine if the 
series is convergent or divergent.

2 + 3/2 + 4/3 + 5/4 + . . . 
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Example 7

 Use the ratio test to determine if the 
series is convergent or divergent.

3/4 + 4/16 + 5/64 + 6/256 + . . . 

Example 7

 Use the ratio test to determine if the 
series is convergent or divergent.

3/4 + 4/16 + 5/64 + 6/256 + . . . 
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Example 8

 Use the ratio test to determine if the 
series is convergent or divergent.
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Example 8

 Use the ratio test to determine if the 
series is convergent or divergent.
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Example 9

 Use the ratio test to determine if the 
series is convergent or divergent.
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Example 9

 Use the ratio test to determine if the 
series is convergent or divergent.
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Comparison Test & Limit 

Comparison Test

HL Math - Santowski

Comparison test:

If the series              and                   are two series with positive terms, then:

(a)If                is convergent and                  for all n, then              converges.

(b)If                is divergent and                  for all n, then              diverges.

 (smaller than convergent is convergent)

 (bigger than divergent is divergent)

Examples:                                                   which is a divergent harmonic series.  Since 
the original series is larger by comparison, it is 

divergent.

which is a convergent p-series.  Since the 

original series is smaller by comparison, it is 

convergent.
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Examples

 Use the Comparison Test to determine the 

convergence or divergence of the following series:
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Limit Comparison test:

If the the series           and              are two series with positive terms, and if 

where                          then either both series converge or both series diverge.  

Useful trick:  To obtain a series for comparison, omit lower order terms in the numerator and the 

denominator and then simplify.

Examples:   For the series                           compare to                              which is a convergent p-series.

For the series                          compare to                                  which is a divergent geometric series.
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Examples

 Use the Limit Comparison Test to determine the 

convergence or divergence of the following series:
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Convergence or divergence?
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