





























(C) Example • Given the differential equation  $\frac{dy}{dx} = x^2y$  and y(0) = 1find the value of y(2) using Euler's method with 4 iterations.















| Co | P 2002-5 (No Calculator)<br>onsider the differential equation: $\frac{dy}{dx} = 2y - 4x$<br>The slope field for the given differential equa<br>through the point $(0, -1)$ and sketch the<br>solution curve that passes through the point                                                                                                                                                                                                                                                                                                        |    | vided. Sket                                                        | ch the solu | ution curve | that passes                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------|-------------|-------------|----------------------------------|
| c) | (0,-1).<br>Let <i>f</i> be the function that satisfies the given differential equation with the initial condition $f(0) = 1$ . Use Euler's method, starting at $x = 0$ with a step size of 0.1, to approximate $f(0.2)$ . Show the work that leads to your answer.<br>Find the value of <i>b</i> for which $y = 2x + b$ is a solution to the given differential equation. Justify your answer.<br>Let <i>g</i> be the function that satisfies the given differential equation with the initial condition $g(0) = 0$ . Does the graph of <i>g</i> |    | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $ |             |             | <br><br><br><br><br><br><br><br> |
|    | have a local extremum at the point $(0,0)$ ?<br>If so, is the point a local maximum or a<br>local minimum? Justify your answer.                                                                                                                                                                                                                                                                                                                                                                                                                  | /\ | ~ ~ \ \ \                                                          |             |             | 1 1 1                            |









Substitution  
Step 1:  

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^{4} - 81 \times 10^{8})$$

$$f(t, \theta) = -2.2067 \times 10^{-12} (\theta^{4} - 81 \times 10^{8})$$

$$f(t, \theta) = -2.2067 \times 10^{-12} (\theta^{4} - 81 \times 10^{8})$$

$$\theta_{i+1} = \theta_{i} + f(t_{i}, \theta_{i})h$$

$$\theta_{1} = \theta_{0} + f(t_{0}, \theta_{0})h$$

$$= 1200 + f(0, 1200)240$$

$$= 1200 + (-2.2067 \times 10^{-12} (1200^{4} - 81 \times 10^{8}))240$$

$$= 1200 + (-4.5579)240$$

$$= 106.09K$$

$$\theta_{1} \text{ is the approximate temperature at } t = t_{1} = t_{0} + h = 0 + 240 = 240$$

$$\theta(240) \approx \theta_{1} = 106.09K$$

<section-header>Solution ContStep 2: For i = 1,  $i_1 = 240$ ,  $\theta_1 = 106.09$  $\theta_2 = \theta_1 + f(t_1, \theta_1)^{\theta_1}$  $= 106.09 + f(240, 106.09)^{\theta_1}(0)^{\theta_1} + (0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2} + (0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2} + (0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta_2}(0)^{\theta$ 





| Effect of step size                                               |         |         |        |                   |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|---------|---------|--------|-------------------|--|--|--|--|--|--|--|
| Table 1. Temperature at 480 seconds as a function of step size, h |         |         |        |                   |  |  |  |  |  |  |  |
|                                                                   | Step, h | θ(480)  | $E_t$  | € <sub>t</sub>  % |  |  |  |  |  |  |  |
|                                                                   | 480     | -987.81 | 1635.4 | 252.54            |  |  |  |  |  |  |  |
|                                                                   | 240     | 110.32  | 537.26 | 82.964            |  |  |  |  |  |  |  |
|                                                                   | 120     | 546.77  | 100.80 | 15.566            |  |  |  |  |  |  |  |
|                                                                   | 60      | 614.97  | 32.607 | 5.0352            |  |  |  |  |  |  |  |
|                                                                   | 30      | 632.77  | 14.806 | 2.2864            |  |  |  |  |  |  |  |
| $\theta(480) = 647.57K$ (exact)                                   |         |         |        |                   |  |  |  |  |  |  |  |
| 33                                                                |         |         |        |                   |  |  |  |  |  |  |  |



