

Fast Five

2

▶ 3

- 1. Solve the DE y' = 2x 5
- 2. Determine the tangent slopes of y(x) from Q1 for the points on the table below:
- 3. Solve the DE y' = x + y
- 4. Determine the tangent slopes of y(x) from Q3 for the points on the table below:

(-2,2)	(-1,2)	(0,2)	(1,2)	(2,2)
(-2,1)	(-1,1)	(0,1)	(1,1)	(2,1)
(-2,0)	(-1,0)	(0,0)	(1,0)	(2,0)
(-2,-1)	(-1,-1)	(0,-1)	(1,-1)	(2,-1)
(-2,-2)	(-1,-2)	(0,-2)	(1,-2)	(2,-2)

Lesson Objectives

- 1. Sketch a slope field for a given differential equation and use the given boundary conditions to identify a specific solution curve on their slope field.
- Provide a geometric interpretation of differential equations using slope fields.
- 3. Explain the relationship between slope fields and solution curves for differential equations.

Calculus - Santowski 5/14/2017

(A) Intro to Slope Fields

- There is a geometric/graphical representation of the solutions to a differential equation that can assist us with understanding the solution even if we do not know the algebraic expression of the solution.
- > This representation is called a slope field.

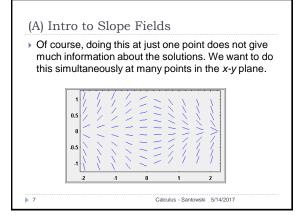
(A) Intro to Slope Fields

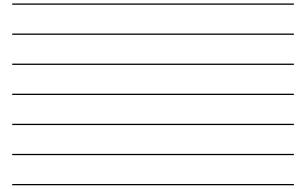
▶ 4

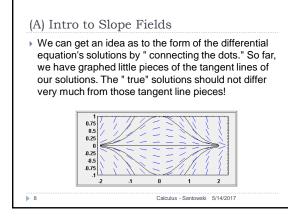
.

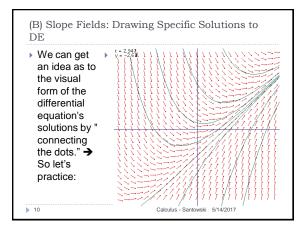
- Consider the following example: dy/dx = -2xy
- Key point: we can get information about slope, of the solution curve, at any point directly from the DE {without solving it}.
- The slope, $y^{\prime}(x),$ of the solutions y(x), is determined once we know the values for x and y , ▶
- e.g., if x=1 and y=-1, then the slope of the solution y(x) passing through the point (1,-1) will be (-2)(1)(-1) = 2. ь
- If we graph y(x) in the x-y plane, it will have slope 2, given x=1 and y=-1. ⊾
- We indicate this graphically by inserting a small line segment at the point (1,-1) of slope 2. •
- See next slide for a graphic representation of this slope segment Þ

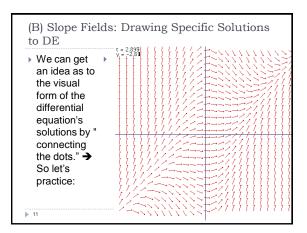
Calculus - Santowski 5/14/2017


Calculus - Santowski 5/14/2017

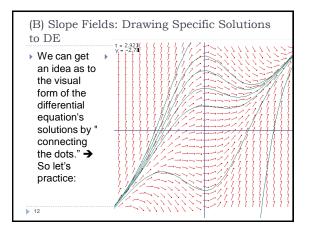

(A) Intro to Slope Fields

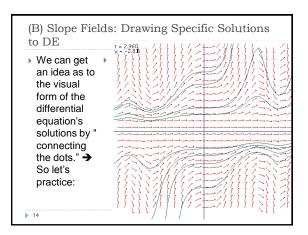

- Thus, the solution of the DE dy/dx = -2xy with the initial condition y(1)=-1 will look similar to this line segment as long as we stay close to x=-1.
- Hence, we can draw small line segments with slope $f(x_i, y_i)$ at any desired point (x_i, y_i)





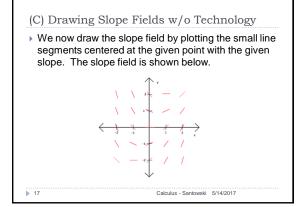
(B) Slope Field DE	s: Drawing Specific Solutions to
We can get an idea as to the visual form of the differential equation's solutions by " connecting the dots." → So let's practice:	• · · - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
▶ 9	Calculus - Santowski 5/14/2017

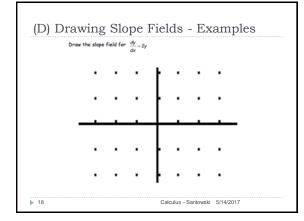




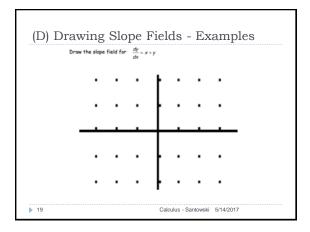
(B) Slope Fiel to DE	ds: Drawing Specific Solutions
 We can get an idea as to the visual form of the differential equation's solutions by " connecting the dots." → So let's practice: 	

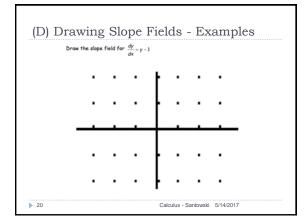
_		

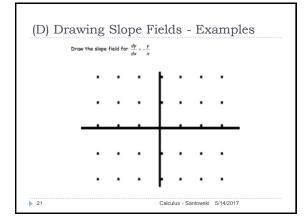


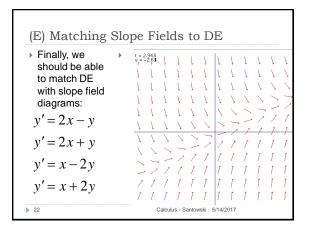

- It is great to use a computer, but sometimes one is required to sketch a slope field by hand.
- To do this we use a version of a T-table and then use small line segments to make the sketch.
- Example: Sketch a few representative slopes of the slope field y' = x - y/2

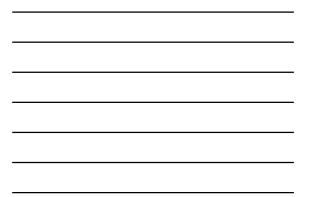
▶ 15


(C) D	rawi	ng S	Slop	pe l	Fiel	ds v	w/o	Technology
		etch	the	inte	eger	poir	nts fo	or -2 <u><</u> x <u><</u> 2 and -2
<u><</u> y <u><</u>	<u><</u> 2.							
	Point	(-2,-2)	(-2,-	1) (·	2,0)	(-2,1)	(-2,2)]
	Slope	-1	-1.5	5	-2	-2.5	-3	
	Point	(-1,-2)	(-1,-	1) (·	1,0)	(-1,1)	(-1,2)	
	Slope	0	-0.	5	-1	-1.5	-2	
	Poin	t (0,	-2) ((0,-1)	(0,0)	(0,1)	(0,2)	
	Slope	e 🗌		0.5	0	-0.5	-1	
	Poin	t (1,	-2) ((1,-1)	(1,0)	(1,1)	(1,2)]
	Slope	e :	2	1.5	1	0.5	0	
	Poin	t (2,	-2) ((2,-1)	(2,0)	(2,1)	(2,2)]
	Slope	•	3	2.5	2	1.5	1	
▶ 16						Calcul	lus - Sar	ntowski 5/14/2017









(F) Internet Links

- + (3) http://tutorial.math.lamar.edu/Classes/DE/DirectionFields.aspx
- http://apcentral.collegeboard.com/apc/public/repository/ap08_calculus_slope fields_worksheet.pdf
- http://www.mrsk.ca/AP/Korpis7.1slopeFields.pdf
- http://www.sandi.net/cms/lib/CA01001235/Centricity/Domain/8052/61%20-%20Slope%20Fields%20Worksheet.pdf
- http://designatedderiver.wikispaces.com/file/view/slope+fields+%231.pdf

23

Calculus - Santowski 5/14/2017