Lesson 53 — Separable
* Differential Equations

Calculus - Santowski
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Lesson Objectives

= 1. Solve separable differential equations
with and without initial conditions

= 2. Solve problems involving exponential
decay in a variety of application
(Radioactivity, Air resistance is
proportional to velocity, Continuously
compounding interest, Population growth)
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i (A) Separable Equations

= So far, we have seen differential
equations that can be solved by
integration since our functions were
relatively easy functions in one variable

= Ex. dy/dx = sinx - 1/x
= Ex. dv/dt =-9.8
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i (A) Separable Equations

= In Ex 1, we simply = But what about the
evaluated the indefinite equation dy/dx = -x/y?
integral of both sides = If we tried finding
g N antiderivatives or
& _sinx-= indefinite integrals ....
dx X
dy) ( : 1} dy_ x
Y ldx = _= =
J.(dx X _[ sinx - dx ax
y=-cosx—Inx+C (dyj ( x]
Llax=||->d
IGefex= T Jox
y=77?
5/14/2017 Calculus - Santowski 4

2017-05-14

i SEPARABLE EQUATION

= A separable equation is a first-order
differential equation in which the
expression for dy/dx can be factored as
a function of x times a function of y.

= In other words, it can be written in the form

dy _
a9

i SEPARABLE EQUATIONS

= The name separable comes from
the fact that the expression on the
right side can be “separated” into a
function of x and a function of y.




i SEPARABLE EQUATIONS

= Equivalently, if f(y) # 0, we could write

d&y_g(9
dx h(y)

where h(y) =1/ f (y)
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i SEPARABLE EQUATIONS

= To solve this equation, we rewrite it in
the differential form h(y) dy = g(x) dx
so that:

= All'y’s are on one side of the equation.
= All X’s are on the other side.

i SEPARABLE EQUATIONS

= Then, we integrate both sides
of the equation:

[h(y)dy = [g(x)dx




SEPARABLE EQUATIONS —
i Example #1

a. Solve the differential equation
dy x°
dx ¥’
b. Find the solution of this equation that
satisfies the initial condition y(0) = 2.
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SEPARABLE EQUATIONS —
i Example #1 - SOLN

= We write the equation in terms of
differentials and integrate both sides:

= y2dy =x?dx
w [y2dy = [ x2 dx

= Yy =18+ C
= where C is an arbitrary constant.

SEPARABLE EQUATIONS —
i Example #1 - SOLN
= We could have used a constant C; on

the left side and another constant C,
on the right side.

= However, then, we could combine
these constants by writing C = C,—-C,.




SEPARABLE EQUATIONS —
i Example #1 - SOLN

= Solving for y, we get:

y=3/x*+3C

= We could leave the solution like this or we could
write it in the form

y=3Yx®+K
where K = 3C.

= Since C is an arbitrary constant, so is K.
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SEPARABLE EQUATIONS —
i Example #1 - SOLN

= |f we put x = 0 in the general solution
in (a), we get:
y(0)=3/K

= To satisfy the initial condition y(0) = 2,
we must have 3/K -2, and so K =8.
= So, the solution of the initial-value problem is:

y=3x*+8

SEPARABLE EQUATIONS —
i Example #1 - SOLN

= The figure shows
graphs of several
members of the
family of solutions of
the differential
equation in Ex 1.
= The solution of
the initial-value
problem in (b) is
shown in red. T
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i (B) Example #2

= Giventhe DE ¥ —_X and y(2)=5
dx y

= (a) Solve fory
= (b) Graphy
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Family of solutions (general solution)
of a differential equation
Erample | b _x ‘[ydy:jxdx

dx }
y?=x*+C

The picture on the right shows some
solutions to the above differential
equation. The straight lines

y=x and y = -x
are special solutions. A unique
solution curve goes through any

point of the plane different from the
origin. The special solutions y = x
and y = -x go both through the
origin.

SEPARABLE EQUATIONS —
i Example #3

= Solve the equation
=y =Xy

= First, we rewrite the equation
using Leibniz notation: d
dy _

X
dx y
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SEPARABLE EQUATIONS —
i Example #3 - SOLN

= If y # 0, we can rewrite it in differential
notation and integrate:

dy

y

_[d—;/ = J'xzdx
3

In\y\:%JrC

=x’dx  y=#0

SEPARABLE EQUATIONS —
i Example #3 - SOLN

= The equation defines y implicitly as a
function of x.

= However, in this case, we can solve
explicitly for y.

e e _ g

= Hence, y:iecexgm

SEPARABLE EQUATIONS —
i Example #3 - SOLN
= We can easily verify that the functiony =0

is also a solution of the given differential
equation.

= So, we can write the general solution in the form

X313

y = Ae

where A is an arbitrary constant (A = e€,
orA=-eC orA=0).




SEPARABLE EQUATIONS —
Example #3 - SOLN

= The figure shows a direction field for
the differential equation in Example 3.

x13
y=Ae :
= Compare it with the next
figure, in which we use (%
the equation S S
to graph solutions for 2
several values of A. )
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SEPARABLE EQUATIONS —
Example #3 - SOLN

= If you use the
direction field to

6
sketch solution - //
curves with y- /

intercepts 5,2, 1,

-1, and -2, they S
will resemble the 4\\
curves in the

figure. . -6

i (B) Example #4

= Given the DE y'=x’y and y(%): de

= (a) Solve
= (b) Graph
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i (B) Example #5

= Given the DE

y+yﬂ: xy—ﬂ and y(2)=1
dx dx

= (a) Solve
= (b) Graph
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i (B) Example #6

= Given the DE

dy =xe’™ and y(0)=2
dx

= (a) Solve
= (b) Graph
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i (B) Example #7
6x°

. dy _
= Given the DE dx 2y + cosy

= (a) Solve given y(@)==
= (b) Graph the solutions on a slope field
diagram
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f) Example #7 — Graphic SOLN

= Here is the graphic

solution for
dy 6%
dx 2y+cosy |
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i Example #8

= Solve d_y = 2xy2
dx
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SOLN to Example #8

A separable differential equation can be expressed as
the product of a function of X and a function of y.

ﬂzg(X)'h(y) h(y)=0

dx
Example:
ﬂ —oxy? Multiply both sides by dx and divide
dx Y both sides by y? to separate the
d variables. (Assume Y? is never zero.)
—)2/ =2x dx
y
y2dy = 2x dx

10
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SOLN to Example #8

A separable differential equation can be expressed as
the product of a function of X and a function of y.

Example:

g J y2dy = IZX dx

d*y =2xy* 4 ) Combined

X Y +C=xX"+C;  constants of
integration

d—Z:Zde oesce g

y y

1 _ 1
y2dy = 2x dx 2+c Y= Z1C
N

i Example #9

= Solve % = 2x(1+ yz)eXz

SOLN to Example #9

d 2
d%: = 2X(1+ yz)e <+— Separable differential equation
%dy =2x e’dx
1+y
) 2
I%dy:J'erxdx u=x
1+y du=2x dx
1
-[71+ v dy = [e'du

tan™y+C, =e"+C,

tany+C, =e* +C,

= 2
tan 'y =e* +C «— Combined constants of integration -
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SOLN to Example #9:
dy X2
o 2y)e

tanty=e“ +C «— We now havey as an implicit
function of X.

tan(taln’1 y) = tan(eXz +C) We can find y as an explicit function
of X by taking the tangent of both

y:tan(e*z +C) sides.
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(C) - Application - Exponential
Growth

= Write a DE for the statement: the rate of
growth of a population is directly
proportional to the population

= Solve this DE
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(C) - Application - Exponential
Growth

= Write a DE for the = Solve this DE:

statement: the rate of

growth of a population dP _ kP

is directly proportional dt

to the population J-d?P: I Kdt
P oo Pip InP|=kt+C

dt dt P(t) = e"*C = eCet

P(t) =Ce"
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i (D) Examples

= The population of bacteria grown in a culture
follows the Law of Natural Growth with a
growth rate of 15% per hour. There are
10,000 bacteria after the first hour.

= (a) Write an equation for P(t)

= (b) How many bacteria will there be in 4
hours?

= (c) when will the number of bacteria be
250,000?
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i (D) Examples

= The concentration of phosphate pollutants in a lake
follows the Law of Natural Growth with a decay rate
of 5.75% per year. The phosphate pollutant
concentrations are 125 ppm in the second year.

= (@) Write an equation for P(t)

(b) What will there be phosphate pollutant

concentration in 10 years?

= (c) A given species of fish can be re-introduced into
the lake when the phosphate concentration falls
below 35 ppm. When can the fish be re-introduced?
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i Challenge Problems

= Solve these DEs:

dy _xy+3y+2x+6

dx Xy —2y—x+2

(i) eysin2xdx+cos(e” —y)iy:O
(iii) Xsinxdx+(1+4y3)1y=0

(i)

13



Example:9. Solve the differential equation
dy xy+3y+2x+6

Chapter 2

Solution:

c
2
©
3
=
i
=
€
L
L
=
a

Variable Separable

y-3ly+ 2 =x+Shlx-2+c 10
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Example:10.  Solve the differential equation

xdx +cosxle™ — yHy =0

Solution:
+cosxle™ — y v
separating the Variables by dividing differential equation by ¢’ cos x
in2x g™ — )
e R
cosx e ¥
2sinxcosx y(,2y
SINXCOST 4o 1 6 (e = yliy =0
Cosx
2sinxdx +(e* — ye by =0
J‘Z\Ill,\(/_\’ + J“v' ye” )r/_\ 0
2cosx+e’ ~| ye’ v”] ¢
2cosx+e’ +ye”? +e” =¢
Example:11. Solve the IVP
xsin xdx + (1 4 4y° )/_r =0 s yr)=0
Solution:

xsinxdx = ,(1 + vl'\“ )r/\
J.\'xln.\'d.\' Ill +4y” ll\

4

SIX — XCOSx y=y +0
x=my=0
SinT—7mcosT =c¢ sinz =0,cos 7 1
ce=n
Solution of IVP is siny—xcosx+y+y' =7
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i MIXING PROBLEMS

= A tank contains 20 kg of salt dissolved
in 5000 L of water.

= Brine that contains 0.03 kg of salt per liter of water
enters the tank at a rate of 25 L/min.

= The solution is kept thoroughly mixed and drains
from the tank at the same rate.

= How much salt remains in the tank after half an
hour?
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i MIXING PROBLEMS

= Let y(t) be the amount of salt (in
kilograms) after t minutes.

= We are given that y(0) = 20 and we
want to find y(30).

= We do this by finding a differential equation
satisfied by y(t).

i MIXING PROBLEMS

= Note that dy/dt is the rate of change of
the amount of salt.

= Thus, (;_)t/ — (rate in)—(rate OUt)

where:

= ‘Rate in’ is the rate at which salt enters the tank.
= ‘Rate out’ is the rate at which it leaves the tank.
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i RATE IN

= We have:

rate in :(O.OSQJ(ZS#j
L min

_0.75.K9.
min
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i MIXING PROBLEMS

= The tank always contains 5000 L
of liquid.

= S0, the concentration at time t is y(t)/5000
(measured in kg/L).

i RATE OUT

= As the brine flows out at a rate of 25
L/min, we have:

rate out = [EQJ[ZSLJ
5000 L min
_y(t) kg
200 min
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i MIXING PROBLEMS

= Thus, from Equation 5, we get:
Q:O 75_ﬂ: 150 y(t)

dt ' 200 200
= Solving this separable differential equation,
we obtain: J- dy _pdt
150—y < 200

7In\150—y\:ﬁ+c
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i MIXING PROBLEMS

= Since y(0) = 20, we have:
-In130=C

S0,-In[150-y| = ﬁ —1In130

i MIXING PROBLEMS

= Therefore, |150 B y| —130g /20

= Y(t) is continuous and y(0) = 20, and the right side
is never 0.

= We deduce that 150 — y(t) is always positive.
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i MIXING PROBLEMS

= Thus, |150 —y| =150 —.
= S0, y(t) =150—130e /%

= The amount of salt after 30 min is:
y(30) = 150-130e2° ~ 38.1 kg
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i MIXING PROBLEMS

= Here’s the graph of the function y(t)
of Example 6.

= Notice that, as time 150
goes by, the amount
of salt approaches 100
150 kg.

50

0 200 400

Logistic Growth Model
Real-life populations do not increase forever. There is
some limiting factor such as food or living space.

There is a maximum population, or carrying capacity, M.

A more realistic model is the logistic growth model where
growth rate is proportional to both the size of the
population (y) and the amount by which y falls short of the
maximal size (M-y). Then we have the equation:

dy
L —ky(M -
pm y(M -y)

The solution to this differential equation:
YoM

=—29 ___ where =y(0
Y YO+(M 7yo)eikm Yo y( )
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