Lesson 53 – Separable Differential Equations

5/14/2017

Calculus - Santowski

Calculus - Santowski

 So far, we have seen differential equations that can be solved by integration since our functions were relatively easy functions in one variable

Calculus - Santowski

- Ex. $dy/dx = \sin x 1/x$
- Ex. *dv/dt* = -9.8

5/14/2017

SEPARABLE EQUATION

- A separable equation is a first-order differential equation in which the expression for *dy/dx* can be factored as a function of *x* times a function of *y*.
 - In other words, it can be written in the form

 $\frac{dy}{dx} = g(x)f(y)$

SEPARABLE EQUATIONS

The name separable comes from the fact that the expression on the right side can be "separated" into a function of x and a function of y.

SEPARABLE EQUATIONS

• Equivalently, if $f(y) \neq 0$, we could write

 $\frac{dy}{dx} = \frac{g(x)}{h(y)}$

where h(y) = 1/f(y)

SEPARABLE EQUATIONS

- To solve this equation, we rewrite it in the differential form h(y) dy = g(x) dx so that:
 - All y's are on one side of the equation.
 - All x's are on the other side.

SEPARABLE EQUATIONS

• Then, we integrate both sides of the equation:

 $\int h(y) \, dy = \int g(x) \, dx$

SEPARABLE EQUATIONS – Example #1

a. Solve the differential equation

 $\frac{dy}{dx} = \frac{x^2}{y^2}$

b. Find the solution of this equation that satisfies the initial condition y(0) = 2.

SEPARABLE EQUATIONS – Example #1 - SOLN

- We could have used a constant C_1 on the left side and another constant C_2 on the right side.
 - However, then, we could combine these constants by writing C = C₂ - C₁.

SEPARABLE EQUATIONS – Example #1 - SOLN • Solving for *y*, we get: $y = \sqrt[3]{x^3 + 3C}$ • We could leave the solution like this or we could write it in the form $y = \sqrt[3]{x^3 + K}$

• Since C is an arbitrary constant, so is K.

SEPARABLE EQUATIONS – Example #3 - SOLN

If $y \neq 0$, we can rewrite it in differential notation and integrate:

$$\frac{dy}{y} = x^2 dx \qquad y \neq 0$$
$$\int \frac{dy}{y} = \int x^2 dx$$
$$\ln|y| = \frac{x^3}{3} + C$$

SEPARABLE EQUATIONS – Example #3 - SOLN

- We can easily verify that the function y = 0 is also a solution of the given differential equation.
 - So, we can write the general solution in the form

$$y = Ae^{x^3/3}$$

where A is an arbitrary constant ($A = e^{C}$, or $A = -e^{C}$, or A = 0).

SEPARABLE EQUATIONS – Example #3 - SOLN

 The figure shows a direction field for the differential equation in Example 3.

$y = Ae^{x^3/3}$

• Compare it with the next figure, in which we use the equation to graph solutions for several values of *A*.

							~	T.									
i	1	1	1	1	1	1	-6	+	-	1	1	1	1	1	1	1	
i.	1	1	1	1	1	-	-	÷	-	-	1	1	1	1	1	1	
t	1	1	1	1	1	-	-	+	-	-	1	1	1	1	1	1	
ï	1	1	1	1	1	-	4	+	-	-	1	1	1	1	1	1	
ï	1	1	1	1	1	-	-	÷	-	-	1	1	1	1	1	1	
1	1	1	1	1	-	-	-	±	-	-	-	1	1	1	1	1	
I.	1	1	1	1	~	-	-	Ŧ	-	-	-	1	1	1	1	1	
1	1	1	-	-	-	-	-	+	-	-	-	-	~	1	1	1	
÷	_		_	+	_	_	-	+	_	_	_	+	_	_		+	-
ŝ	1	~	~	-1	-	-	-0)4	-	-	-	4	~	~	~	2	T.
																-	
v	1	1	~	-	-	-	-	÷	-	-	~	2	~	1	1	Ň	
ì	1	1	11	11	11	1.1	-2	-	1	1 1	11	11	11	1	1	1	
1	111	111	111	111	111	1 1 1	-2	-	1 1 1	111	111	1111	111	111	111	111	
1 1 1	1000	1111	1111	1111	1111	1111	121 17		1111	1111	1111	11111	1111	1111	1111		
1 1 1 1	10000	1111-	1111-	11/11	11111	11111	121 1 171		11111	11111	11111	11/11/	1111-	1111-	1111-	*****	
1 1 1 1 1	100000	111111	1111	11/11/1	1111111	111111	121 1 171 1		111111	111111	111111	11/1/11	1111	1111	~~~~~	******	
1 1 1 1 1 1	1000000	1111111	1111111	11/1/11	11111111	11111111	171 171 1 10		1111111	11111111	1111111	11/1/11/1	1111000	1111111		*******	
111111	1000000	1111111	11110000	11/1/11	1111111	11111111	121 171 1 10		1111111	1111111	1111111	11/1/110	1111000	11111111		*******	

SOLN to Example #8

A separable differential equation can be expressed as the product of a function of x and a function of y.

$$\frac{dy}{dx} = g(x) \cdot h(y) \qquad h(y) \neq 0$$

Example:

 $\frac{dy}{dx} = 2xy^2$ $\frac{dy}{y^2} = 2x \ dx$

Multiply both sides by dx and divide both sides by y^2 to separate the variables. (Assume y^2 is never zero.)

 $y^{-2}dy = 2x \ dx$

SOLN to Example #8

A separable differential equation can be expressed as the product of a function of x and a function of y.

SOLN to Example #9

$$\frac{dy}{dx} = 2x(1+y^2)e^{x^2} \longrightarrow \text{Separable differential equation}$$

$$\frac{1}{1+y^2}dy = 2x \ e^{x^2}dx$$

$$\int \frac{1}{1+y^2}dy = \int 2x \ e^{x^2}dx \qquad u = x^2$$

$$du = 2x \ dx$$

$$\int \frac{1}{1+y^2}dy = \int e^u du$$

$$\tan^{-1}y + C_1 = e^u + C_2$$

$$\tan^{-1}y + C_1 = e^{x^2} + C_2$$

$$\tan^{-1}y = e^{x^2} + C \longleftarrow \text{Combined constants of integration}$$

(D) Examples The population of bacteria grown in a culture follows the Law of Natural Growth with a growth rate of 15% per hour. There are 10,000 bacteria after the first hour.

- (a) Write an equation for P(t)
- (b) How many bacteria will there be in 4 hours?
- (c) when will the number of bacteria be 250,000?

5/14/2017

Calculus - Santowski

37

oter 2	Example:9.	Solve the differential equation $\frac{dy}{dx} = \frac{xy + 3y + 2x + 6}{xy - 2y - x + 2}$	
ion Cha	Solution:	$\frac{dy}{dx} = \frac{xy + 3y + 2x + 6}{xy - 2y - x + 2}$	
le Differential Equati		$= \frac{y(x+3)+2(x+3)}{y(x-2)-1(x-2)}$ $= \frac{(x+3)(y+2)}{(x-2)(y-1)}$ $\left[1-\frac{3}{y+2}\right]dy = \left[1+\frac{5}{x-2}\right]dx$	
Variable Separabl	1	$\int \left(1 - \frac{3}{y+2}\right) dy = \int \left(1 + \frac{5}{x-2}\right) dx$ $y - 3\ln y+2 = x + 5\ln x-2 + c.$	
		$y - 3\ln y + 2 = x + 5\ln x - 2 + c$.	40

Example:10.	Solve the differential equation
	$e^{y}\sin 2xdx + \cos x(e^{2y} - y)dy = 0$
Solution:	$e^{y}\sin 2xdx + \cos x(e^{2y} - y)dy = \circ$
5	separating the Variables by dividing differential equation by $e^y \cos x$
	$\frac{\sin 2x}{\cos x}dx + \frac{e^{2y} - y}{e^y}dy = 0$
	$\frac{2\sin x \cos x}{\cos x} dx + e^{-y} (e^{2y} - y) dy = 0$ $2\sin x dx + (e^y - ye^{-y}) dy = 0$
	$\int 2 \sin x dx + \int (e^{y} - y e^{-y}) dy = 0$ - 2 cos x + e^{y} - (-y e^{-y} - e^{-y}) = c
	$-2\cos x + e^{y} + ye^{-y} + e^{-y} = c$
	Compress

Example:11.	Solve the IVP					
	$x\sin xdx + (1+4y)$	$^{3})dy = 0$;	$y(\pi)=0$.			
Solution:		- A				
	$x\sin x dx = -(1+4)$	y^3) dy				
	$\int x \sin x dx = -\int (1 + x) dx = - +$	$4y^3$) dy				
5	$\sin x - x\cos x = -y - y$	$v^4 + c$				
	$x = \pi, y = 0$					
sin	$\pi - \pi \cos \pi = c$	sin	$\pi = 0, \cos \pi = -1$			
	$c = \pi$					
Sol	ution of IVP is	$\sin x - x \cos \theta$	$x + y + y^4 = \pi.$			

MIXING PROBLEMS

 A tank contains 20 kg of salt dissolved in 5000 L of water.

- Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of 25 L/min.
- The solution is kept thoroughly mixed and drains from the tank at the same rate.
- How much salt remains in the tank after half an hour?

MIXING PROBLEMS

- Let y(t) be the amount of salt (in kilograms) after t minutes.
- We are given that y(0) = 20 and we want to find y(30).
 - We do this by finding a differential equation satisfied by *y*(*t*).

MIXING PROBLEMS

• Note that *dy/dt* is the rate of change of the amount of salt.

Thus, $\frac{dy}{dt} = (\text{rate in}) - (\text{rate out})$ where:

- 'Rate in' is the rate at which salt enters the tank.
- 'Rate out' is the rate at which it leaves the tank.

MIXING PROBLEMS

- The tank always contains 5000 L of liquid.
 - So, the concentration at time t is y(t)/5000 (measured in kg/L).

Logistic Growth Model

Real-life populations do not increase forever. There is some limiting factor such as food or living space.

There is a maximum population, or carrying capacity, M.

A more realistic model is the logistic growth model where

growth rate is proportional to both the size of the

population (y) and the amount by which y falls short of the

maximal size (M-y). Then we have the equation:

$$\frac{dy}{dt} = ky(M - y)$$

The solution to this differential equation:

$$y = \frac{y_0 M}{y_0 + (M - y_0)e^{-kMt}}$$
, where $y_0 = y(0)$