

Example b:

$$\int u \, dv = uv - \int v \, du$$

$$u = x^2 \quad dv = e^x \, dx$$

$$u = x^2 \quad dv = e^x \, dx$$

$$du = 2x \, dx \quad v = e^x$$

$$x^2 e^x - 2\int x e^x \, dx$$

$$u = x \quad dv = e^x \, dx$$

$$x^2 e^x - 2\left(x e^x - \int e^x \, dx\right)$$

$$du = dx \quad v = e^x$$

$$x^2 e^x - 2x e^x + 2e^x + C$$

$$\int_0^1 \tan^{-1} x \, dx = x \tan^{-1} x \Big]_0^1 - \int_0^1 \frac{x}{1+x^2} \, dx$$
$$= 1 \cdot \tan^{-1} 1 - 0 \cdot \tan^{-1} 0 - \int_0^1 \frac{x}{1+x^2} \, dx$$
$$= \frac{\pi}{4} - \int_0^1 \frac{x}{1+x^2} \, dx$$

• To evaluate this integral, we use the substitution $t = 1 + x^2$ (since *u* has another meaning in this example).

- Then, dt = 2x dx.
- So, $x \, dx = \frac{1}{2} \, dt$.

• When x = 0, t = 1, and when x = 1, t = 2.

• Hence,
$$\int_{0}^{1} \frac{x}{1+x^{2}} dx = \frac{1}{2} \int_{1}^{2} \frac{dt}{t}$$
$$= \frac{1}{2} \ln |t| \Big]_{1}^{2}$$
$$= \frac{1}{2} (\ln 2 - \ln 1)$$
$$= \frac{1}{2} \ln 2$$

$$\int_0^1 \tan^{-1} x \, dx = \frac{\pi}{4} - \int_0^1 \frac{x}{1+x^2} \, dx$$
$$= \frac{\pi}{4} - \frac{\ln 2}{2}$$

Further Examples				
$\begin{array}{l} \begin{array}{l} \mbox{Longentian by Points}\\ Evaluate the integration in Exercises 1 - 24 using integration by performance of the integration of$	16. 15. $\int s^{1}s^{r} ds$ 16. $\int s^{r}s^{r} \frac{d}{ds}$ 17. $\int (s^{2} - 5)s^{r} ds$ 18. $\int t^{2} + s + 1)s^{r} ds$ 19. $\int s^{2}s^{r} ds$ 20. $\int s^{2}s^{r} ds$ 21. $\int s^{2} \cos 3s ds$ 22. $\int s^{2} \cos 3s ds$ 10. $\int s^{2} \cos 3s ds$ 10. $\int s^{2} \sin 3s $			

Evaluating Integrals Evaluate the integrals in E: quire integration by parts.	tercises 31-50. Some integrals do not re-	
31. $\int x \sec x^2 dx$	32. $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$	
$33. \int x \left(\ln x \right)^2 dx$	$34. \int \frac{1}{x (\ln x)^2} dx$	
$35. \int \frac{\ln x}{x^2} dx$	$36. \int \frac{(\ln x)^3}{x} dx$	
$37. \int x^3 e^{x^4} dx$	$38. \int x^5 e^{x^3} dx$	
39. $\int x^3 \sqrt{x^2 + 1} dx$	40. $\int x^2 \sin x^3 dx$	
41. $\int \sin 3x \cos 2x dx$ 43. $\int e^x \sin e^x dx$	42. $\int \sin 2x \cos 4x dx$ 44. $\int \frac{e^{\sqrt{x}}}{\pi} dx$	
45. $\int \cos \sqrt{x} dx$	$\int \sqrt{x}$ 46. $\int \sqrt{x} e^{\sqrt{x}} dx$	
47. $\int_{0}^{\pi/2} \theta^2 \sin 2\theta \ d\theta$	48. $\int_{0}^{\pi/2} x^{3} \cos 2x dx$	
49. $\int_{2/\sqrt{3}}^{2} t \sec^{-1} t dt$	50. $\int_0^{1/\sqrt{2}} 2x \sin^{-1}(x^2) dx$	

Q.2. (5 - points). Evaluate $\int \ln (2x) dx$. $u = \ln (2x) \qquad dv = dx$ SOLUTION. $du = \frac{2dx}{2x} = \frac{dx}{x} \qquad v = x$ $\int \ln (2x) dx = x \ln (2x) - \int dx \qquad \dots \qquad (2 - points)$ $= x \ln (2x) - x + C \qquad \dots \qquad (1 - point)$

INTEGRATION BY PARTS

• Nevertheless, we try choosing $u = e^x$ and $dv = \sin x$

• Then, $du = e^x dx$ and $v = -\cos x$.

INTEGRATION BY PARTS $\int e^x \sin x \, dx = -e^x \cos x + \int e^x \cos x \, dx$ • So, integration by parts gives: The integral we have obtained, $\int e^x \cos x \, dx$, is no simpler than the original one. At least, it's no more difficult.

Having had success in the preceding example integrating by parts twice, we do it again.

INTEGRATION BY PARTS

- At first glance, it appears as if we have accomplished nothing.
 - We have arrived at ∫ e^x sin x dx, which is where we started.

INTEGRATION BY PARTS

• Adding to both sides $\int e^x \sin x \, dx$, we obtain:

 $2\int e^x \sin x \, dx = -e^x \cos x + e^x \sin x$

(F) Internet Links

- Integration by Parts from Paul Dawkins, Lamar University
- Integration by Parts from Visual Calculus