A. Lesson Context

	How do we measure "change" in a function or function model?		
BIG PICTURE of this UNIT:	Why do we measure "change" in a function?		
	How do we analytically analyze a function or function model – beyond a simple		
	preCalculus & visual/graphic level?		
	Where we've been	Where we are	Where we are heading
CONTEXT of this LESSON:			
	We have connected two ideas	Can we now carry forward the	We will explore the
	through our motion work 🛨	area under the curve idea to	concept of integration
	antiderivatives and area under	nonlinear functions and once	
	the curve	again use an antiderivative?	

B. Recap:

We have connected two fundamental ideas in our last lesson → idea #1: that of area under a curve (in our simplest cases wherein we looked at a velocity-time graph) to find a total distance travelled (or displacement) AND then idea #2: where we can use an antiderivative (i.e the position function) to find the same answer of distance traveled (or displacement).

An object travels with a velocity defined by the function v(t) = 3t + 2 for 4 seconds. Its starting position was s(0) = 2. How far did it travel?

Total distance travelled is (2x4) + 0.5(4)(12) = 32 m

Using the antiderivatives, the position function is $s(t) = 1.5t^2 + 2t + 2$. So we can also use this position function to determine $s(4) - s(0) = (1.5x4^2 + 2x4 + 2) - 2 = 24 + 8 + 2 - 2 = 32$ and come up with the same 32 m of distance traveled.

C. But what if (Go to Geogebra link) → https://www.geogebra.org/m/CfwjsmHx

But what happens when the velocity function is NOT linear, but rather a curve? How do we now find an area under the curve?

So, let's estimate the area under the curve of $f(x) = x^2$, between x = 0 and $x = 3 \rightarrow how? \rightarrow let's make rectangles$ $A_T = A_1 + A_2 + A_3 + A_4 + A_5 + A_6$ $A_T = A_1 + A_2 + A_3 + \dots A_7 + A_8 + A_9$ $A_T = A_1 + A_2 + A_3$ $AT = h_1w + h_2w + h_3w + h_4w + h_5w + h_6w$ $AT = h_1w + h_2w + + h_8w + h_9w$ $AT = h_1 w + h_2 w + h_3 w$ $A_T = f(0.5) \cdot \frac{1}{2} + f(1) \cdot \frac{1}{2} + \dots + f(2.5) \cdot \frac{1}{2} + f(3) \cdot \frac{1}{2} + f(3) \cdot \frac{1}{2} + f(\frac{1}{3}) \cdot \frac{1}{3} + f(\frac{2}{3}) \cdot \frac{1}{3} + \dots + f(\frac{8}{3}) \cdot \frac{1}{3} + f(3) \cdot \frac{1}{3}$ $A_T = f(1) \cdot 1 + f(2) \cdot 1 + f(3) \cdot 1$

So what are we seeing? A summation of a the areas of rectangles (and the dimensions of each rectangle are determined by the function "height" multiplied by a width)

$$A_{T} = A_{1} + A_{2} + A_{3} + \dots = \sum_{i=1}^{n} A_{i}$$

$$A_{T} = f(x_{1}) \cdot \Delta x + f(x_{2}) \cdot \Delta x + f(x_{3}) \cdot \Delta x + \dots = \sum_{i=1}^{n} f(x_{i}) \cdot \Delta x$$

But how many rectangles do we need? → how about an infinite number!!! → hence that limit idea again

$$\begin{split} A_T &= f(x_1) \cdot \Delta x + f(x_2) \cdot \Delta x + f(x_3) \cdot \Delta x + \dots = \sum_{i=1}^n f(x_i) \cdot \Delta x \\ A_T &= \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \cdot \Delta x \end{split}$$

So how about a new symbol? $A_T = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \cdot \Delta x$ will now be represented/replaced by $A_T = \int_a^b f(x) dx$, where a and b are the two x-value "boundaries" along the x-axis that form the area we are after.

What calculus approach do we use to find these areas? → Antiderivatives!!

So what does the "integral" symbol ask us to "perform"? → determine an antiderivative!!

D. Definite Integrals as Area under the curve using antiderivatives: EXAMPLES

- 1. Evaluate the following definite integral $\rightarrow \int_{1}^{5} (x-1)dx$. Verify using a GDC
- 2. Evaluate the following definite integral $\rightarrow \int_{-5}^{1} (x-1)dx$. Verify using a GDC
- 3. Evaluate the following definite integral $\rightarrow \int_{-5}^{5} (x-1)dx$. Verify using a GDC

What point(s) is/are being made by these three examples?

- 4. Evaluate the following definite integral $\Rightarrow \int_{1}^{3} (x^2 + 2x) dx$. Verify using a GDC
- 5. Evaluate the following definite integral $\Rightarrow \int_{1}^{4} \left(\frac{1}{x}\right) dx$. Verify using a GDC
- 6. Evaluate the following definite integral $\Rightarrow \int_{1}^{3} 4x^{2}(x+1) dx$. Verify using a GDC
- 7. Evaluate the following definite integral $\Rightarrow \int_{0}^{\pi/2} \sin(x) dx$. Verify using a GDC
- 8. Evaluate the following definite integral $\Rightarrow \int\limits_0^{\frac{3\pi}{2}}\cos(x-\pi)\ dx$. Verify using a GDC

E. Indefinite Integrals as Antiderivatives

Notice that these two columns are really asking the SAME question, asking the same thing of you

(a) Find the antiderivative of x^4

(a) Find the indefinite integral $\int x^4 dx$

(b) Find the antiderivative of $x^{\frac{2}{5}}$

(b) Find the indefinite integral $\int x^{\frac{2}{5}} dx$

(c) Find the antiderivative of $\frac{1}{\sqrt[5]{x}}$

(c) Find the indefinite integral $\int \left(\frac{1}{\sqrt[5]{x}}\right) dx$

Find the following indefinite integrals:

i. $\int x^3 dx$ and then $\int 2x^3 dx$ and then $\int -4x^3 dx$ and then $\int \frac{1}{\sqrt[3]{2}} x^3 dx$ \Rightarrow point being?

ii. $\int x^3 dx$ and then $\int 5x^{-2} dx$ and then $\int 4dx$ and then finally $\int (x^3 + 5x^{-2} + 4) dx$ \rightarrow point being?

iii. $\int x^3 dx$ and then $\int (x+2)^3 dx$ and then $\int (x-4)^3 dx$ and then $\int (x-\pi)^3 dx$ point being?

iv. $\int \frac{1}{x} dx$ and then $\int \frac{2}{x} dx$ and then $\int e^x dx$ and then $\int -4e^x dx$ point being?

v. $\int \frac{1}{2x} dx$ and then $\int \frac{1}{x+2} dx$ and then $\int \frac{1}{3x+2} dx$ and then $\int \frac{1}{4-3x} dx$ point being?

vi. $\int \sin(x)dx$ and then $\int 2\cos(x)dx$ and then $-\int \sin(x)dx$ and then $\int \cos(x)dx$ \rightarrow point being?

vii. $\int \sin(x+2)dx$ and then $\int \sin(x-2)dx$ and then $\int \sin(3x)dx$ and then $\int \sin(3x-5)dx$ \Rightarrow point being?

http://www.personal.kent.edu/~bosikiew/Math11012/Section5-1.pdf

F. Indefinite Integrals: PRACTICE

1.
$$\int (x^3 - 4x + 5) dx$$

3.
$$\int (3u^2 - 2)^2 du$$

5.
$$\int y^2 (1+3y) dy$$

7.
$$\int (x+1)(3x-2)dx$$

9.
$$\int \frac{x^2 + 2x - 3}{x^4} dx$$

$$2. \int \frac{1}{x^3} dx$$

$$4. \int (\sqrt{x} + \frac{1}{2\sqrt{x}}) dx$$

6.
$$\int (\sqrt[4]{x^3} - 4x) dx$$

8.
$$\int \frac{1}{u^2 \sqrt{u}} du$$

10.
$$\int \left(\frac{3}{y^3} - \frac{5}{y^2} + 2y \right) dy$$

G. Definite Integrals: PRACTICE

1.
$$\int_{1}^{4} (2x+5)dx$$

$$3. \int_{1}^{4} \frac{3}{\sqrt{u}} du$$

$$5. \int_{0}^{8} (t^{\frac{1}{3}} + 4) dt$$

7.
$$\int_{1}^{3} (3u^2 + 5u - 4) du$$

2.
$$\int_{-2}^{2} (x^2 - 1) dx$$

4.
$$\int_{-2}^{-1} (x - \frac{1}{x^2}) dx$$

6.
$$\int_{2}^{4} (y^2 - \frac{3}{y^2}) dy$$

8.
$$\int_{0}^{2} (x+3)^2 dx$$

H. Definite Integrals: PRACTICE

So, looking for patterns → here's one → Evaluate the following 4 definite integrals:

First
$$\int_{0}^{5} (x^2 - 4) dx$$

and then $\int_{0}^{2} (x^2 - 4) dx + \int_{2}^{5} (x^2 - 4) dx$ (why did I select x = 2 to "split up" the integral?

and then
$$\int_{0}^{5} |x^{2} - 4| dx$$
 and then $\int_{0}^{2} |x^{2} - 4| dx + \int_{2}^{5} |x^{2} - 4| dx$