

Opei	ning Exe	rcis	ses #1		
Diffe	rentiate the followin	g functi	ons with respect to th	ne appro	priate variable.
(a)	$s = 12t^4 - \sqrt{t}$	(b)	$Q = \left(n + \frac{1}{n^2}\right)^2$	(c)	$P = \sqrt{r}(r + \sqrt[3]{r} - 2)$
(d)	$T = \frac{(\theta - \sqrt{\theta})^3}{\theta}$	(e)	$A = 40L - L^3$	(f)	$F = \frac{50}{v^2} - v$
(g)	$V = 2l^3 + 5l$	(h)	$A = 2\pi h + 4h^2$	(i)	$N = n^4 - \sqrt[3]{n} + \pi n$
Diffe	Differentiate the following with respect to the independent variable.				
(a)	$v = \frac{2}{3}\left(5 - \frac{2}{t^2}\right)$	(b)	$S = \pi r^2 + \frac{20}{r}$	(c)	$q = \sqrt{s^5} - \frac{3}{s}$
(d)	$h = \frac{2-t+t^2}{t^3}$	(e)	$L = \frac{4 - \sqrt{b}}{b}$	(f)	$W=(m-2)^2(m+2)$

Lesson Objectives

- (1) Work with basic strategies for developing new knowledge in Mathematics → (a) graphical, (b) technology, (c) algebraic
- (2) Introduce & work with fundamental trig limits
- > (3) Determine the derivative of trigonometric functions
- (4) Apply & work with the derivatives of the trig functions

Calculus - Santowski 2/18/17

▶ 4

7

<u>(E) Derivative o</u>	f the Cosine Function
 Let's set it up algebraically: 	$\frac{d}{dx}(\cos(x)) = \frac{d}{dx}\left(\sqrt{1-\sin^2(x)}\right)$ $\frac{d}{dx}\left(\cos(x)\right) = \frac{1}{2}\left(1-\sin^2(x)\right)^{\frac{1}{2}} \cdot -2\sin(x)\cos(x)$ $\frac{d}{dx}\left(\cos(x)\right) = \frac{1}{2\sqrt{1-\sin^2(x)}} \cdot -2\sin(x)\cos(x)$
	$\frac{d}{dx}(\cos(x)) = \frac{-2\sin(x)\cos(x)}{2\sqrt{1-\sin^2(x)}}$
	$\frac{d}{dx}(\cos(x)) = \frac{-2\sin(x)\cos(x)}{2\sqrt{\cos^2(x)}}$
	$\frac{d}{dx}(\cos(x)) = \frac{-2\sin(x)\cos(x)}{2\cos(x)}$
25	$\frac{d}{dx}\left(\cos(x)\right) = -\sin(x)$ Calculus - Santowski 2/18/17

(A) EXPLORATION - PART 1

- I. Sketch y = b^x Each partner at the table will use a different value for b
- $\blacktriangleright\,$ 2. PREDICT the features of the graph of its derivative by answering the following Q
- (a) Identify the intervals of increase and decrease
- (b) identify the critical values
- (c) From this information (and knowing what each means about the derivative), prepare a hand drawn graph of the derivative

Calculus - Santowski

30 2/18/17

(B) EXPLORATION – PART 2

- We will go back to our "first principles" that being the idea that we can determine instantaneous rates of changes using tangent lines
- (1) Use GDC to draw the tangent lines at various x values
- (2) Record the slopes of the tangent lines on a table.
- (3) Prepare a scatter plot from the table of values.
- ▶ (4) Describe scatter plot
- Calculus Santowski

EXPLORATION – PART 3

- Now let's use graphing technology:
- > Use the TI-84 to prepare a graph of the derivative of $y = b^x$.
- What is the derivative of y = bx?
- Confirm that your equation for the derivative is correct (and show/explain how you confirmed this.)

Calculus - Santowski

32 2/18/17

33 2/18/17

31 2/18/17

EXPLORATION – PART 4

- Now we will use algebra to PROVE that our observations were correct.
- So we go back to our limit definition of a derivative:

• Our definition is:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

▶ So work with it

Calculus - Santowski

DERI FUNC	VATIVE OF EXPONENT CTIONS	MAL
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x+h)}{h}$	<u>x)</u>
•	$f'(x) = \lim_{h \to 0} \frac{b^{x+h} - b^x}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{b^x b^h - b^x}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{b^x (b^h - 1)}{h}$	
	$f'(x) = \lim_{h \to 0} \left(b^x \right) \cdot \lim_{h \to 0} \frac{b^h - b^h}{h}$	1
	$f'(x) = b^x \times \lim_{h \to 0} \frac{b^h - 1}{h}$	
Calculus -	Santowski	34 2/18/17

0	Investigate numerically values	$\lim_{h\to 0} (2^h - 1)/h$ with a table of	0	Investigate I numerically values	im _{h→0} (3 ^h – 1)/h with a table of
0	×	v	0	x	у
0	-0.00010	0.69312	0	-0.00010	1.09855
0	-0.00007	0.69313	0	-0.00007	1.09857
0	-0.00003	0.69314	0	-0.00003	1.09859
0	0.00000	undefined	0	0.00000	undefined
0	0.00003	0.69316	0	0.00003	1.09863
0	0.00007	0.69316	0	0.00007	1.09865
0	0.00010	0.69317	0	0.00010	1.09867
0	And we see as an appro	the value of 0.693 ximation of the limit	0	And we see as an appro	the value of 1.098 ximation of the lim

(B) Investigating the Limits					
Investigate lim h→0 (4 ^h – 1)/h o Investigate lim h→0 (e ^h – 1)/h numerically with a table of values values					
o x y	o x y				
-0.00010 1.38620	o -0.00010 0.99995				
o -0.00007 1.38623	 -0.00007 0.99997 				
 -0.00003 1.38626 	 -0.00003 0.99998 				
 0.00000 undefined 	 0.00000 undefined 				
o 0.00003 1.38633	o 0.00003 1.00002				
 0.00007 1.38636 	 0.00007 1.00003 				
 0.00010 1.38639 	 0.00010 1.00005 				
• And we see the value of 1.386 as an approximation of the limit	• And we see the value of 1.000 as an approximation of the limit				
▶ 36	Calculus - Santowski 2/18/17				

