Lesson 38 - Graphical Differentiation

CALCULUS - SANTOWSKI

2/6/12

CALCULUS - SANTOWSKI

Lesson Objectives

- 1. Given the equation of a function, graph it and then make conjectures about the relationship between the derivative function and the original function
- 2. From a function, sketch its derivative
- 3. From a derivative, graph an original function

2/6/17

CALCULUS - SANTOWSKI

Fast Five

- 1. Find f(x) if $f'(x) = -x^2 + 2x$
- 2. Sketch a graph whose first derivative is always negative
- 3. Graph the derivative of the function
- 4. If the graph represented the derivative, sketch the original function

2/6/17

CALCULUS - SANTOWSKI

 0 2	. 6
-10	

(A) Important Terms & Derivative Connections turning point:

maximum: minimum:

local vs absolute max/min:

"end behaviour"

increase:

decrease:

"concave up"
"concave down"

......

CALCULUS - SANTOWSKI

(B) Functions and Their Derivatives

In order to "see" the connection between a graph of a function and the graph of its derivative, we will use graphing technology to generate graphs of functions and simultaneously generate a graph of its derivative

Then we will connect concepts like max/min, increase/decrease, concavities on the original function to what we see on the graph of its derivative

2/6/17 CALCULUS - SANTOWSKI

(E) Matching Graph of Derivatives to the Graph of a Function

Now, we will build upon this thorough analysis of a function & its connection to the derivative in order to (i) predict what derivatives of more complicated functions look like and (ii) work in REVERSE (given a derivative, sketch the original fcn

To further visualize the relationship between the graph of a function and the graph of its derivative function, we can run through some exercises wherein we are given the graph of a function and we are being asked to match it to the graph of its derivative.

2/6/17

CALCULUS - SANTOWSKI

13

Matching — Example #1 S. Graph of y = f(x) Graph of f'(x) Schot Circle Graph of f'(x) Schot Circle ALCILLIS - SMATOMSS 16

(E) Sketching Graph of Derivatives from the Graph of a Function

Now, we will build upon this thorough analysis of a function & its connection to the derivative in order to (i) predict what derivatives of more complicated functions look like and (ii) work in REVERSE (given a derivative, sketch the original fcn

To further visualize the relationship between the graph of a function and the graph of its derivative function, we can run through some exercises wherein we are given the graph of a function → can we draw a graph of the derivative and vice versa

2/6/17 CALCULUS - SANTOWSKI

Working With Derivative Graphs (9) The domain of a function f is [a,g]. Below is a sketch of the graph of the derivative of f. (a) The largest intervals on which f is increasing are (____, ____) and (____, _____). (b) f has local minima at x =_____ and x =_____. (c) The largest intervals on which f is one ave up are (_____, _____) and (____, ________). (d) f has points of inflection at: x =_____ and x =_____.

Working With Derivative Graphs (11) The domain of a function f is [a,d]. Below is a sketch of the graph of the derivative of f. (a) The largest interval on which f is decreasing is $(________)$. (b) f has a local maximum at $x = ___$. (c) The largest intervals on which f is oneave up are $(___________)$ and $(___________$.

(G) Matching Function Graphs and Their Derivative Graphs - Internet Links

Work through these interactive applets from maths online Gallery - Differentiation 1 wherein we are given graphs of functions and also graphs of derivatives and we are asked to match a function graph with its derivative graph
(http://www.univie.ac.at/future.media/moe/galerie/diff1/diff1.html)
http://www.univie.ac.at/moe/tests/diff1/ablerkennen.html

2/6/17 CALCULUS - SANTOWSKI