A. Lesson Context

	Where we've been	Where we are	Where we are heading
CONTEXT of this			
LESSON:	We know how to determine	Can we now work with	Can I find generalized
	the equations of derivative	and analyze functions	methods/techniques for
	functions using the Power	(and function models)	working with instantaneous
	Rule	using the Power Rule	RoC for ANY function
			types?

B. Concept Review

A lot of ground has been covered with the many definitions encountered. So, below is a visual summary of the definitions we have covered to date.

Opening (REVIEW) Example

a. Ex 1: Differentiate the following:

i.
$$g(x) = 5\sqrt{x} - \frac{10}{x^2} + \frac{1}{2\sqrt{x}} - 3x^4 + 1$$
 ii. $b(x) = 4x^{-\frac{3}{2}} + 2x^{\frac{5}{2}} - x$

ii.
$$b(x) = 4x^{-\frac{3}{2}} + 2x^{\frac{5}{2}} - x$$

iii.
$$b(x) = 0.1x^3 + 2x^{\sqrt{2}} - \frac{2}{x^{\pi}}$$

b. Find the second derivatives of:

i.
$$a(x) = \frac{1}{x^2}$$

ii.
$$g(x) = x^{1/2} + x^3$$

i.
$$a(x) = \frac{1}{x^2}$$
 ii. $g(x) = x^{1/2} + x^3$ iii. $b(x) = 4x^{-\frac{3}{2}} + 2x^{\frac{5}{2}} - x$

C. Examples: Working with Polynomial Functions

1. Find the equation of the line which is orthogonal to the curve $y = 5x - 32\sqrt{x}$ at x = 4.

2. Determine the equation of the line that is tangent to $y(t) = \frac{1-2t}{\sqrt{t}}$ at t = 4.

3. Find all critical points of $s(t) = t - 4\sqrt{t}$.

4. Determine the interval(s) in which $g(x) = x + \frac{1}{x}$ is increasing and decreasing.

D. Examples: Working with Polynomial Models

- 1. The average speed (in m/s) of a gas molecule is calculated by $v^2 = \frac{8RT}{\pi M}$, where *T* is temperature in Kelvin, *M* is the molar mass (in kg/moles) and R = 8.31.
 - a. Rearrange the equation so you have the velocity as a function of the temperature \rightarrow i.e v(T) =.
 - b. Find the molar mass of one kilogram of oxygen molecules.
 - c. Determine the value of $\frac{dv}{dT}$ when T = 300K and when T = 3000K. Interpret your answer.
 - d. Is there a maxiumum speed possible for the oxygen molecule? Why/why not?

- 2. Biologists have observed that the pulse rate (P, in beats per minute) in animals is related to body mass (m, in kilograms) by the approximate formula $P(m) = \frac{200}{\sqrt[4]{m}}$.
 - a. Is P(m) an increasing or decreasing function? Show the mathematica analysis that leads to your answer.
 - b. Find the equation of the tangent lines to the function at m = 35 (say the weight of an adult goat) and m = 75 (say the weight of an HL1 student).
 - c. What does this model suggest about the pulse rate of a child as they get older? Explain.

E. Further Polynomial Function Analysis: Intervals of Increase & Decrease

1. Given the following functions, use calculus to determine: (and then your TI-84 to verify)

(a)
$$f(x) = \frac{1}{x} - \frac{1}{x^2}$$

(b)
$$g(x) = 2\sqrt{x} - x$$

- a. the co-ordinates of the extrema
- b. the intervals of increase & decrease
- 2. Use the FDT to classify all extrema of the function $y = x(x 8\sqrt{x})$.

3. Determine the intervals of increase and decrease of the following functions:

(i)
$$f(x) = x^{\frac{3}{2}} - \frac{4}{\sqrt{x}}$$

(ii)
$$g(x) = 6x^{\frac{3}{2}} - 4\sqrt{x}$$

(iii)
$$h(x) = x^4 - 4x^{\frac{5}{2}}$$

- 4. Determine the absolute extrema for $g(x) = x^{\frac{5}{2}} x^2$ on (0,2].
- 5. Go online and find out what the **Mean Value Theorem** states. Then, verify the MVT with:

a.
$$f(x) = \sqrt{x}$$
 and $x_1 = 1$ and $x_2 = 9$.

b.
$$g(x) = x^3 - 2x + 5$$
 and $x_1 = -1$ and $x_2 = 2$.