

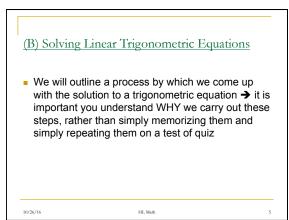

HL Math

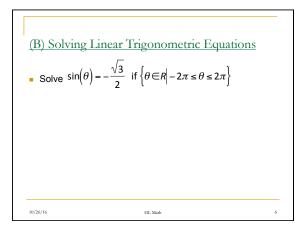
1

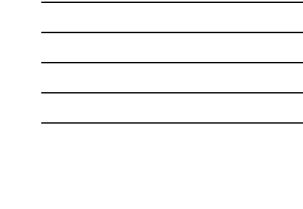
10/26/16



|                                                                                          |                                                                                                                                    | Concepts Review                                                                                              |                                          |                                 |                                 |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|---------------------------------|
| 2. Simplify.                                                                             |                                                                                                                                    |                                                                                                              |                                          |                                 |                                 |
| (a) $\sin x \left(\frac{1}{\cos x}\right)$                                               | (b) (cos x)(tan x)                                                                                                                 | (c) $1 - \cos^2 x$                                                                                           |                                          |                                 |                                 |
| (d) $1 - \sin^2 x$<br>(g) $\frac{\tan x}{\sin x}$<br>(j) $\frac{1 + \tan^2 x}{\tan^2 x}$ | (e) $\cos^2 x + \sin^2 x$<br>(h) $\frac{\frac{\sin x}{\cos x}}{\frac{\tan x}{\tan x}}$<br>(k) $\frac{\sin x \cos x}{1 - \sin^2 x}$ | (f) $(1 - \sin x)(1 + \sin x)$<br>(i) $(\frac{1}{\tan x})\sin x$<br>(j) $\frac{1 - \cos^2 x}{\sin x \cos x}$ |                                          |                                 |                                 |
|                                                                                          |                                                                                                                                    |                                                                                                              | $(m)\frac{1}{\sin x} + \frac{1}{\cos x}$ | (n) $\tan x + \frac{1}{\cos x}$ | (o) $\frac{1}{\tan x} + \sin x$ |
|                                                                                          |                                                                                                                                    |                                                                                                              | 3. Factor each expressi                  | on.                             |                                 |
| (a) $1 - \cos^2 \theta$                                                                  | (b) $1 - \sin^2 \theta$                                                                                                            |                                                                                                              |                                          |                                 |                                 |
| (c) $\sin^2 \theta - \cos^2 \theta$                                                      | (d) $\sin \theta - \sin^2 \theta$                                                                                                  |                                                                                                              |                                          |                                 |                                 |
| (e) $\cos^2\theta + 2\cos\theta$                                                         | 9 + 1 (f) sir                                                                                                                      | $2\theta - 2\sin\theta + 1$                                                                                  |                                          |                                 |                                 |





## (A) Review


10/26/16

- We have two key triangles to work in two key ways → (i) given a key angle, we can determine the appropriate value of the trig ratio & (ii) given a key ratio, we can determine the value(s) of the angle(s) that correspond to that ratio
- We know what the graphs of the two parent functions look like and the 5 key points on each curve

HL Math

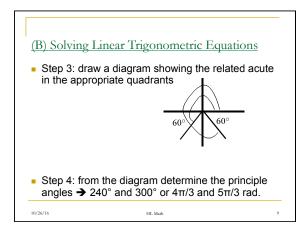






### (B) Solving Linear Trigonometric Equations

• Work with the example of  $\sin(\theta) = -\sqrt{3/2}$ 


10/26/16

- Step 1: determine the related acute angle (RAA) from your knowledge of the two triangles
- Step 2: consider the sign on the ratio (-ve in this case) and so therefore decide in what quadrant(s) the angle must lie
- Step 3: draw a diagram showing the related acute in the appropriate quadrants
- Step 4: from the diagram, determine the principle angles

HL Math

### (B) Solving Linear Trigonometric Equations - Solns

- Work with the example of  $\sin(\theta) = -\sqrt{3/2}$
- Step 1: determine the related acute angle (RAA) from your knowledge of the two triangles (in this case, simply work with the ratio of  $\sqrt{3/2}$ )  $\rightarrow \theta = 60^{\circ}$  or  $\pi/3$
- Step 2: consider the sign on the ratio (-ve in this case) and so therefore decide in what quadrant the angle must lie → quad. III or IV in this example
  UNX/VE

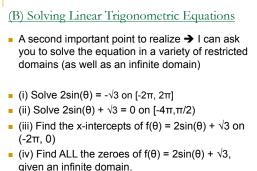




## (B) Solving Linear Trigonometric Equations

- One important point to realize → I can present the same original equation  $(\sin(\theta) = -\sqrt{3/2})$  in a variety of ways:
- (i)  $2\sin(\theta) = -\sqrt{3}$

10/26/16


- (ii)  $2\sin(\theta) + \sqrt{3} = 0$
- (iii) Find the x-intercepts of  $f(\theta) = 2\sin(\theta) + \sqrt{3}$

HL Math

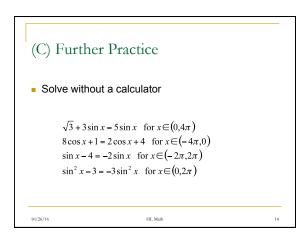
10

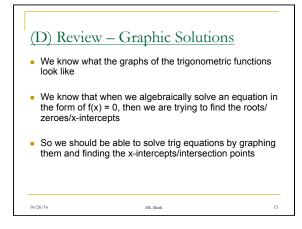
11

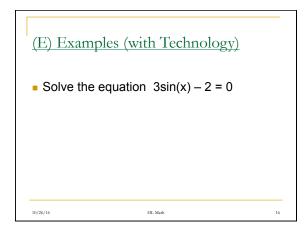
• (iv) Find the zeroes of  $f(\theta) = 2\sin(\theta) + \sqrt{3}$ 



(C) Further Examples Solve the following without a calculator  $2\cos(\theta)+2 = 3$  for  $\theta \in (0, 4\pi)$  $2\tan(\theta) - \sqrt{2} = 0$  for  $\theta \in (0, 3\pi)$  $\sin(\theta) + 1 = 2$  for  $\theta \in (-2\pi, 2\pi)$ 10/26/16 12


HL Math


given an infinite domain. 10/26/16 HL Math


```
(C) Further Practice

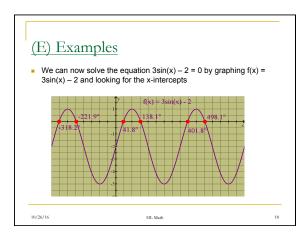
• Solve the following for \theta:

\sin \theta = 0 \quad \text{for } 0 \le \theta \le 4\pi
\sin \theta = 1 \quad \text{for } -2\pi \le \theta \le 2\pi
1 + \cos \theta = 0 \quad \text{for } -\pi \le \theta \le 3\pi
\tan \theta = 0 \quad \text{for } 0 \le \theta \le 3\pi
```

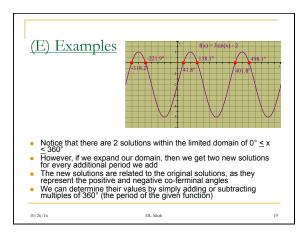




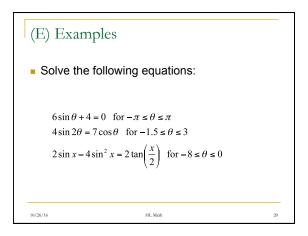


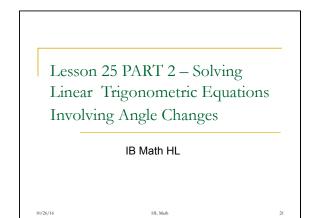

# (E) Examples

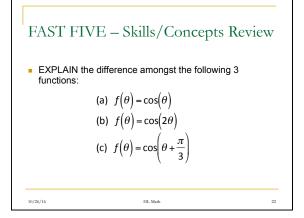
10/26/16


■ Solve the equation 3sin(x) - 2 = 0

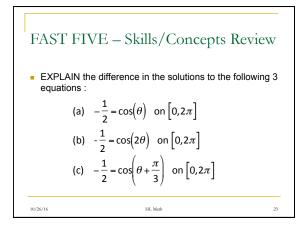
- The algebraic solution would be as follows:
- We can set it up as sin(x) = 2/3 so  $x = sin^{-1}(2/3)$  giving us  $41.8^{\circ}$  (and the second angle being  $180^{\circ} 41.8^{\circ} = 138.2^{\circ}$
- Note that the ratio 2/3 is not one of our standard ratios corresponding to our "standard" angles (30,45,60), so we would use a calculator to actually find the related acute angle of 41.8°


HL Math









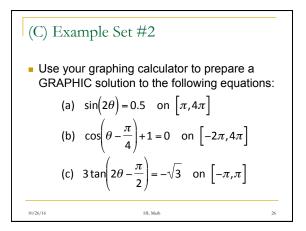




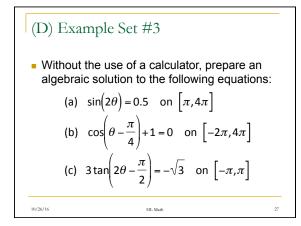





# (A) Review


10/26/16

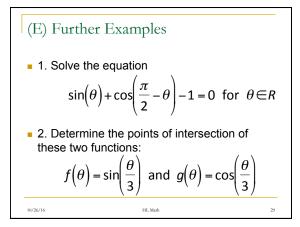
- We have two key triangles to work in two key ways → (i) given a key angle, we can determine the appropriate value of the trig ratio & (ii) given a key ratio, we can determine the value(s) of the angle(s) that correspond to that ratio
- We know what the graphs of the two parent functions look like and the 5 key points on each curve

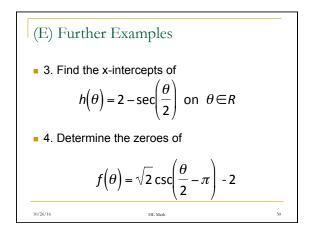

HL Math

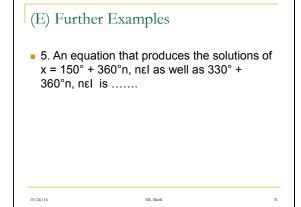
(B) Example Set #1  
• Without the use of a calculator, prepare an algebraic solution to the following equations:  
(a) 
$$\sin(\theta) = 0.5$$
 on  $[\pi, 4\pi]$   
(b)  $\cos(\theta) + 1 = 0$  on  $[-2\pi, 4\pi]$   
(c)  $3\tan(\theta) = -\sqrt{3}$  on  $[-\pi, \pi]$ 

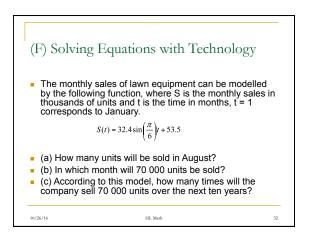








(D) Example Set #4  
• Without the use of a calculator, prepare an algebraic solution to the following equations:  
(a) 
$$\sin(2\theta) = 0.5$$
 on  $\theta \in \mathbb{R}$   
(b)  $\cos\left(\theta - \frac{\pi}{4}\right) + 1 = 0$  on  $\theta \in \mathbb{R}$   
(c)  $3\tan\left(2\theta - \frac{\pi}{2}\right) = -\sqrt{3}$  on  $\theta \in \mathbb{R}$ 









