

- Now imagine an equation like 2x + 2 = 2(x + 1) and we ask ourselves the same question → for what values of x is it true?
- Now → 4(x 2) = (x 2)(x + 2) (x 2)² and we ask ourselves the same question → for what values of x is it true?

6

1 • What about $\frac{1}{x^{2}}$ = _____ 10/26/16 HL Math - Santowski

- = Recall our definitions for sin(θ) = o/h, cos(θ) = a/h and tan(θ) = o/a
- So now one trig identity can be introduced →if we take sin(θ) and divide by cos(θ), what do we get?
- $\underline{sin(\theta)} = \underline{o/h} = \underline{o} = tan(\theta)$
- cos(θ) a/h a
- So the tan ratio is actually a quotient of the sine ratio divided by the cosine ratio

11

What would the cotangent ratio then equal?

(G) Sin	nplifying Trig Expressions	
Simpli	fy the following expressions:	
	(a) $2 - 2\cos^2 x$ (b) $\sin^2 x \cos x + \cos^3 x$ (c) $(\cos x - \sin x)^2$ (d) $\frac{2 - 2\cos^2 x}{1 + \cos x}$	
10/26/16	HI. Math - Santowski	18

