Lesson 20 - Laws of Logarithms

IB Math HL1 - Santowski

10/26/16

IB Math HL1 - Santowski

Lesson Objectives

- Understand the rationale behind the "laws of logs"
- Apply the various laws of logarithms in solving equations and simplifying expressions

10/26/16

IB Math HL1 - Santowski

(A) Properties of Logarithms – Product Law

- Recall the laws for exponents → product of powers → (b^x)(b^y) = b^(x+y) → so we ADD the exponents when we multiply powers
- For example \rightarrow (23)(25) = 2(3+5)
- So we have our POWERS \rightarrow 8 x 32 = 256

10/26/16

IB Math HL1 - Santowski

3

(A) Properties of Logarithms – Product Law

- Now, let's consider this from the INVERSE viewpoint
- We have the ADDITION of the exponents
- **3 + 5 = 8**
- But recall from our work with logarithms, that the exponents are the OUTPUT of logarithmic functions
- So \rightarrow 3 + 5 = 8 becomes $\log_2 8 + \log_2 32 = \log_2 256$
- Now, HOW do we get the right side of our equation to equal the left?
- Recall that 8 x 32 = 256
- So $\log_2(8 \times 32) = \log_2 8 + \log_2 32 = \log_2 256$

10/26/16

IB Math HL1 - Santowski

(A) Properties of Logarithms – Product Law

- So we have our first law → when adding two logarithms, we can simply write this as a single logarithm of the product of the 2 powers
- $\log_a(mn) = \log_a m + \log_a n$
- $\log_a m + \log_a n = \log_a (mn)$

10/26/16 IB Math HL1 - Santowski

(A) Properties of Logarithms – Formal Proof of Product Law

- Express log_am + log_an as a single logarithm
- We will let log_am = x and log_an = y
- So log_am + log_an becomes x + y
- But if log_am = x, then a^x = m and likewise a^y = n
- Now take the product $(m)(n) = (a^x)(a^y) = a^{x+y}$
- Rewrite mn=a^{x+y} in log form → log_a(mn)=x + y
- But x + y = log_am + log_an
- So thus log_a(mn) = log_am + log_an

10/26/16

IB Math HL1 - Santowski

(B) Properties of Logarithms – Quotient Law

- Recall the laws for exponents → Quotient of powers → (b^x)/(b^y) = b^(x-y) → so we subtract the exponents when we multiply powers
- For example \rightarrow (28)/(23) = 2(8-3)
- So we have our POWERS \rightarrow 256 ÷ 8 = 32

10/26/16

IB Math HL1 - Santowski

7

(B) Properties of Logarithms – Quotient Law

- Now, let's consider this from the INVERSE viewpoint
- We have the SUBTRACTION of the exponents
- **8** 3 = 5
- But recall from our work with logarithms, that the exponents are the OUTPUT of logarithmic functions
- So \rightarrow 8 3 = 5 becomes $\log_2 256 \log_2 8 = \log_2 32$
- Now, HOW do we get the right side of our equation to equal the left?
- Recall that 256/8 = 32
- So $\log_2(256/8) = \log_2 256 \log_2 8 = \log_2 32$

10/26/16

IB Math HL1 - Santowski

(B) Properties of Logarithms – Quotient Law

- So we have our second law → when subtracting two logarithms, we can simply write this as a single logarithm of the quotient of the 2 powers
- $\log_a(m/n) = \log_a m \log_a n$
- $\log_a m \log_a n = \log_a (m/n)$

10/26/16

IB Math HL1 - Santowski

9

(C) Properties of Logarithms- Logarithms of Powers

- Now work with $\log_3(625) = \log_3(5^4) = x$:
- we can rewrite as $log_3(5 \times 5 \times 5 \times 5) = x$
- we can rewrite as $log_3(5) + log_3(5) + log_3(5) + log_3(5) = x$
- We can rewrite as 4 [log₃(5)] = 4 x 1 = 4
- So we can generalize as $log_3(5^4) = 4 [log_3(5)]$
- So if $log_3(625) = log_3(5)^4 = 4 \times log_3(5)$ → It would suggest a rule of logarithms → $log_a(b^x) = x log_ab$

10/26/16

IB Math HL1 - Santowski

(D) Properties of Logarithms – Logs as Exponents

- Consider the example $3^{\log_3 5} = x$
- Recall that the expression $log_3(5)$ simply means "the exponent on 3 that gives 5" \rightarrow let's call that y
- So we are then asking you to place that same exponent (the y) on the same base of 3
- Therefore taking the exponent that gave us 5 on the base of 3 (y) onto a 3 again, must give us the same 5!!!!
- We can demonstrate this algebraically as well

10/26/16

IB Math HL1 - Santowski

11

(D) Properties of Logarithms – Logs as Exponents

- Let's take our exponential equation and write it in logarithmic form
- So $3^{\log_3 5} = x$ becomes $\log_3(x) = \log_3(5)$
- Since both sides of our equation have a log₃ then x
 5 as we had tried to reason out in the previous slide
- So we can generalize that $b^{\log_b x} = x$

10/26/16

IB Math HL1 - Santowski

(E) Summary of Laws

Logs as exponents	$b^{\log_b x} = x$
Product Rule	$log_a(mn) = log_a m + log_a n$
Quotient Rule	$\log_a(m/n) = \log_a(m) - \log_a(n)$
Power Rule	$Log_a(m^p) = (p) \times (log_a m)$

10/26/16 IB Math HL1 - Santowski

(F) Examples

- \bullet (i) $\log_3 54 + \log_3 (3/2)$
- (ii) log₂144 log₂9
- (iii) log30 + log(10/3)
- (iv) which has a greater value
 - \Box (a) $\log_3 72 \log_3 8$ or (b) $\log 500 + \log 2$
- (v) express as a single value
 - \Box (a) $3\log_2 x + 2\log_2 y 4\log_2 a$
 - \Box (b) $\log_3(x+y) + \log_3(x-y) (\log_3 x + \log_3 y)$
- \bullet (vi) $\log_2(3/4) \log_2(24)$
- \bullet (vii) (log₂5 + log₂25.6) (log₂16 + log₃9)

10/26/16

IB Math HL1 - Santowski

14

Solve for x

$$\log_2 x = 2\log_2 7 + \log_2 3$$
$$\log_2 x = \log_2 11 - \log_2 \sqrt{99}$$
$$\log^3 \sqrt{x} + \log 13 = -\log \frac{1}{91}$$

Solve for x and verify your solution

$$\log_5(x+1) + \log_5 3 = 2$$

$$\log_3(x-2) + \log_3 x = 1$$

$$\log x + \log(x-5) = \log(2x-12)$$

10/26/16 IB Math HL1 - Santowski 15

(F) Examples

Solve and verify

$$\log_2 x = \frac{1}{3}\log_2 3 + \log_2 \sqrt{3}$$

$$\log_5(x-1) - \log_5(x-5) = \log_5 \frac{1}{x+3}$$

$$\log_2 250 - \log_2 2 = 3\log_{\frac{1}{x}}$$

• If $a^2 + b^2 = 23ab$, prove that

$$\log\left(\frac{a+b}{5}\right) = \frac{\log a + \log b}{2}$$

10/26/16 IB Math HL1 - Santowski 16

(F) Examples

Write each single log expression as a sum/difference/product of logs

$$\log \frac{abc^2}{d^3}$$
$$\log \frac{x\sqrt[3]{y}}{z^5}$$
$$\ln \sqrt{\sin x \ln x}$$

10/26/16 IB Math HL1 - Santowski 17

(F) Examples

Use the logarithm laws to simplify the following:

(a)
$$\log_2 xy - \log_2 x^2$$

(b)
$$\log_2 \frac{8x^2}{y} + \log_2 2xy$$

(c)
$$\log_3 9xy^2 - \log_3 27xy$$

(d)
$$\log_4(xy)^3 - \log_4 xy$$

(e)
$$\log_3 9x^4 - \log_3(3x)^2$$

10/26/16 IB Math HL1 - Santowski 18

(F) Examples

Exercise 2. Given $Log_{10}(5.0) = 0.70 \ Log_{10}(2.0) = 0.30 \ Log_{10}(3.0) = 0.48$, without a <u>calculator</u>, determine:

Log₁₀(0.40)

 $Log_{10}(\frac{4}{15})$

(1) Log₁₀(6.0) (6) (2) Log₁₀(8.0) (7) (3) $Log_{10}(\frac{1}{2})$ (8) $Log_{10}(\sqrt{5.0})$

(4) Log₁₀(15.) (9) $Log_{10}(\sqrt[4]{3.0})$ (5) $Log_{10}(\frac{2}{3})$ (10) Log₁₀(0.036)

IB Math HL1 - Santowski 10/26/16 19