































(D) Using the FTA

- Given that 1-3i is a root of $x^4-4x^3+13x^2-18x-10=0,$ find the remaining roots.
- Write an equation of a third degree polynomial whose given roots are 1 and *i*. Additionally, the polynomial passes through (0,5)
- Write the equation of a quartic wherein you know that one root is 2 i and that the root x = 3 has a multiplicity of 2.

HL1 Math - Santowski

HL1 Math - Santowski

(E) Further Examples The equation x³ - 3x² - 10x + 24 = 0 has roots of 2, h, and k. Determine a quadratic equation whose roots are h - k and hk. The 5th degree polynomial, f(x), is divisible by x³ and f(x) - 1 is divisible by (x - 1)³. Find f(x). Find the polynomial p(x) with integer coefficients such that one solution of the equation p(x)=0 is 1+√2+√3.

(E) Further Examples Start with the linear polynomial: y = -3x + 9. The x-coefficient, the root and the intercept are -3, 3 and 9 respectively, and these are in arithmetic progression. Are there any other linear polynomials that enjoy this property? What about quadratic polynomials? That is, if the polynomial y = ax² + bx + c has roots r₁ and r₂ can a, r₁, b, r₂ and c be in arithmetic progression?

9/27/16

9/27/16