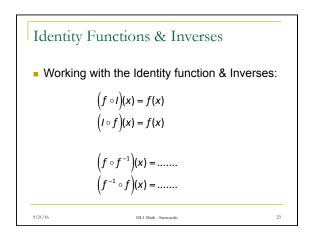
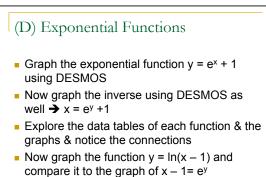


defility I ui	nctions & Inv	erses
-		
efore we start our discusion	of inverse functions, it is worthwh	ile looking back at a fundamenta
	erations. The relevant algebraic p	
$\in \mathbb{R}$ and $c \in \mathbb{R}$ are:		
	Under addition	Under multiplication
Closure	$a + b \in \mathbb{R}$	$a \times b \in \mathbb{R}$
Closure Commutativity	$a+b \in \mathbb{R}$ $a+b = b+a$	$a \times b \in \mathbb{R}$ $a \times b = b \times a$
0100010		who ch
Commutativity	a+b = b+a	$a \times b = b \times a$
Commutativity Associativity	a+b = b+a $(a+b)+c = a+(b+c)$	$a \times b = b \times a$ $(a \times b) \times c = a \times (b \times c)$ $1: a \times 1 = 1 \times a = a$
Commutativity Associativity Existence of the identity	a+b = b+a (a+b)+c = a+(b+c) 0: a+0 = 0+a = a	$a \times b = b \times a$ $(a \times b) \times c = a \times (b \times c)$ $1: a \times 1 = 1 \times a = a$





Explain the point to the natural log function

```
(D) Exponential Functions

• Find the inverses of the following functions:

(a) y = e^{2x}

(b) y = e^{x+2}

(c) y = 2e^{x}

(d) y = e^{x} + 2

(e) y = \ln(x+3) - 1

(f) y = 4\ln(2x)
```