| | • | How do we WORK WITH & EXTEND the concept of "functions" | | | | | |---------------------------|---|---|--|--|--|--| | BIG PICTURE of this UNIT: | • | Why are exponential equations written in different forms? | | | | | | | • | How do we EXTEND our knowledge of exponential functions, beyond the basics of | | | | | This lesson will be based upon a STUDENT DIRECTED DISCUSSION model in your groups, you should be having This lesson will be based upon a STUDENT DIRECTED DISCUSSION model in your groups, you should be having DISCUSSIONS about how to think and work through and then present the solutions to the following questions. So, discuss & prepare solutions to the following questions. Record the key ideas of your discussions/solutions in your notebook. Then, once you have had your discussions, present your solutions on the board. Solutions do NOT necessarily NEED to be correct – they simply form the basis for DISCUSSIONS !!!! If your group has (i) multiple solutions that lead to the same answers OR (ii) same/different solutions that lead to different answers, present them ANYWAY!! - 1. **(CI)** Given the function $f(x) = 8 2^{x+4}$; {8,9,13,16,17} - a. Determine the domain, range, asymptote(s) and intercept(s) of f(x). Sketch and label key points. - b. The function $f(x) = 8 2^{x+4}$ represents a transformation of the "parent function" $y = 2^x$. Describe which transformations must be applied to $f(x) = 8 2^{x+4}$ to **get back to** $y = 2^x$. - c. Determine the equation of the inverse of $f^{-1}(x)$. Sketch and label key points. - d. **(CA)** Use your TI-84 to graph y = |f(x)| (that is $y = |8 2^{x+4}|$. Sketch it in your notes. Explain WHY the graph now appears as it does. - e. **(HL)** Determine the equation of $f^{-1} \circ f(x)$ and $f \circ f^{-1}(x)$. Show the key steps of your work. Expain the significance of the result. - 2. Questions dealing with half-life can use a "special equation/formula". Go on line and find this formula. Use this formula to answer the following questions: {11,20} - a. The half life of caffeine in a child's system when a child eat or drinks something with caffeine is 1.5 hours. How much caffeine would remain in a child's body if the child ate a chocolate bar with 30 mg of caffeine 8 hours before? - b. The half-life of Carbon-14 is about 5370 years. What percentage of the original carbon-14 would you expect to find in a sample after 2500 years? - c. Now rework these questions, wherein we now set up the scenario of **continuous changes**, **hence you must use the special base of e**. So, write new equations using base e to rework your solutions. - 3. A hard-boiled egg has a temperature of 98 degrees Celsius. If it is put into a sink that maintains a temperature of 18 degrees Celsius, its temperature x minutes later is given by the formula $T(x) = 18 + 80e^{-0.29x}$. Hilda needs her egg to be exactly 30 degrees Celsius for decorating. How long should she leave it in the sink? $\{4,11,20\}$ - 4. There has been an accident at the local nuclear plant and a new radioactive material (Santogen) has been spilled. This radioactive material begins to decay exponentially. Assume that this decay is **continuous**. There were 1820 Bq (becquerels) of Santogen initially. Eight hours later there were 576 Bq. {11,20} - a. What is the decay rate of Santogen? - b. This material becomes non-leathal when there is a max of 20 Bq. When will it be safe for workers to enter the space and clear it out? - c. Will there ever be 0 Bqs left of the Santogen material? - d. What is the half life of Santogen? - 5. Use your TI-84 to determine the value of the following logarithms: {6,7} | $\log_2 0$ | $\log_2 1$ | $\log_2 2$ | $\log_2 3$ | $\log_2 4$ | $\log_2 5$ | $\log_2 6$ | |-------------|-------------|-------------|-------------|-------------|-------------|-------------| | $\log_2 7$ | $\log_2 8$ | $\log_2 9$ | $\log_2 10$ | $\log_2 11$ | $\log_2 12$ | $\log_2 13$ | | $\log_2 14$ | $\log_2 15$ | $\log_2 16$ | $\log_2 17$ | $\log_2 18$ | $\log_2 19$ | $\log_2 20$ | Look for patterns amongst the numbers & outputs: - a. Compare $\log_2 2$ and $\log_2 5$ and $\log_2 10$ - b. Compare $\log_2 3$ and $\log_2 4$ and $\log_2 12$ - c. Compare $\log_2 3$ and $\log_2 6$ and $\log_2 18$ - d. Can you see some patterns that will lead to some GENERALIZATIONS that would then in turn allow us to make PREDICTIONS? - i. So, predict the value of (i) $\log_2 48$, (ii) $\log_2 36$, (iii) $\log_2 75$ - ii. So, predict the value of (i) $\log_2\left(\frac{1}{3}\right)$, (ii) $\log_2 7.5$, (iii) $\log_2 \sqrt[3]{12}$ - 6. Four months ago after it stopped advertising, a manufacturing company noticed that its sales per unit "y" had dropped each month according to the function $y = 100,000e^{-0.05x}$ where "x" is the number of months after the company stopped advertising. $\{4,11,20\}$ - a. Find the projected drop in sales per unit six months after the company stops advertising. - b. How many months until sales per unit had dropped \$50,000? - 7. Solve the following logarthmic equations: {6,7} - a. SL level (http://www.mathworksheets4kids.com/logarithms/solve-level2-easy1.pdf) - b. HL Level (http://www.mathworksheets4kids.com/logarithms/evaluating-expressions-level2-hard1.pdf) - 8. At any time $t \ge 0$, in days, the number of bacteria present, y, is given by $y = Ce^{kt}$ where k is a constant. The initial population is 1000 and the population triples during the first 5 days. $\{4,11,20\}$ - a. What does "C" represent? What is its value? - b. Write an equation for y at any time $t \ge 0$. - c. By what factor will the population have increased in the first 10 days? - d. At what time, t, in days, will the population have increased by a factor of 6? - 9. (CI) Evaluate the following: {6,7} $$\log_{4} 64 = \log_{2} 32 = \log_{\frac{1}{5}} 25 = \log_{12} 144 = \log_{4} 2 = \log_{\frac{2}{3}} \left(\frac{4}{9}\right) = \log_{125} 5 = \log_{9} 3 = \log_{8} 2 = \log_{2} \frac{1}{16} = \log_{243} 27 = \log_{8} 4 = \log_{\frac{1}{2}} \frac{1}{16} \frac{1}{16}$$ - 10. During a certain epidemic, the number of people that are infected at any time increases at a <u>rate proportion</u> <u>to</u> the number of people that are infected at that time. If 1000 people are infected when the epidemic is first discovered and 1200 are infected 7 days later, how many people are infected 12 days after the epidemic is first discovered? {4,11,20} - 11. The following data represents the price and quantity supplied in 1997 for IBM personal computers. {4,11,20} | Price (\$/Computer) | 2300 | 2000 | 1700 | 1500 | 1300 | 1200 | 1000 | |---------------------|------|------|------|------|------|------|------| | Quantity Supplied | 180 | 173 | 160 | 150 | 137 | 130 | 113 | - a. Use your calculator draw the scatter plot. Use price as the independent variable. Label your axes. - b. Use your calculator to fit a logarithmic model to this data. - 12. Let P(t) represent the number of wolves in a population at time t years, when $t \ge 0$. The population of wolves is given by P(t) = $800 Ce^{-kt}$. $\{4,11,20\}$ - a. If P(0) = 500, find P(t) in terms of t and k. - b. If P(2) = 700, find k - c. As time increases without bound, what happens to the population of wolves? Support your answer with a graph and a written explanation.