Lesson 5.6: Angles in Standard Position

IM3 - Santowski

Fast Five – Opening Exercises

- Use your TI 84 calculator:
- Evaluate $sin(50^\circ) \rightarrow illustrate$ with a diagram
- Evaluate $sin(130^\circ) \rightarrow Q \rightarrow$ How can a right triangle have a 130° angle?
- Evaluate sin(230°) → illustrate with a diagram?? Q → How can a right triangle have a 230° angle?
- Evaluate $sin(310^\circ) \rightarrow illustrate$ with a diagram??
- Evaluate sin(770°) → illustrate with a diagram??
- Evaluate sin(-50°) → illustrate with a diagram?? Q → How can a right triangle have a -50° angle?

QUIZ

Draw the following angles in standard position

- **1**30°
- **230°**
- **310°**
- **770°**
- **-50°**

The first of our keys ideas as we now start our Trig Functions Lessons:

 (1) How do we use current ideas to develop new ones

The first of our keys ideas as we now start our Trig Functions Lessons:

 (1) How do we use current ideas to develop new ones → We will use RIGHT TRIANGLES and CIRCLES to help develop new understandings

The first of our keys ideas as we now start our Trig Functions Lessons:

(2) What does a TRIANGLE have to do with SINE WAVES

The first of our keys ideas as we now start our Trig Functions Lessons:

■ (2) What does a TRIANGLE have to do with SINE WAVES → How can we REALLY understand how the sine and cosine ratios from right triangles could ever be used to create function equations that are used to model periodic phenomenon

(A) Angles in Standard Position

Angles in standard position are defined as angles drawn in the Cartesian plane where the initial arm of the angle is on the *x* axis, the vertex is on the origin and the terminal arm is somewhere in one of the four quadrants on the Cartesian plane

8

(A) Angles in Standard Position

 To form angles of various measure, the terminal arm is simply rotated through a given angle

9

(A) Angles in Standard Position

 We will divide our Cartesian plane into 4 quadrants, each of which are a multiple of 90 degree angles

The *x*-*y* plane is divided into four **quadrants** by the *x*- and *y*-axes. If θ is a positive angle, then the terminal arm lies in

- quadrant I when $0^{\circ} < \theta < 90^{\circ}$
- quadrant II when $90^{\circ} < \theta < 180^{\circ}$
- quadrant III when $180^{\circ} < \theta < 270^{\circ}$
- quadrant IV when $270^{\circ} < \theta < 360^{\circ}$

Coterminal Angles

- Coterminal angles share the same terminal arm and the same initial arm.
- As an example, here are four different angles with the same terminal arm and the same initial arm.

(A) Principle Angles and Related Acute Angles

- The principal angle is the angle between 0° and 360°.
- The coterminal angles of 480°, 840°, and 240° all share the same principal angle of 120°.
- The related acute angle is the angle formed by the terminal arm of an angle in standard position and the x-axis.
- The related acute angle is always positive and lies between 0° and 90°.

Example 1

Determine the principal angle and the related acute angle for $\theta = -225^{\circ}$.

Example 1

Determine the principal angle and the related acute angle for $\theta = -225^{\circ}$.

Solution

Sketch $\theta = -225^{\circ}$ terminating in quadrant II. Label the principal angle and the related acute angle.

The principal angle is the smallest positive angle that is coterminal to -225° . In this case, $360^{\circ} - 225^{\circ} = 135^{\circ}$. The related acute angle lies between the terminal arm and the *x*-axis. It is positive but less than 90°. In this case, $|-225^{\circ} - (-180^{\circ})| = 45^{\circ}$. Or, using the principal angle, $180^{\circ} - 135^{\circ} = 45^{\circ}$.

Example 2

Determine the next two consecutive positive coterminal angles and the first negative coterminal angle for 43° .

Example 2

Determine the next two consecutive positive coterminal angles and the first negative coterminal angle for 43° .

Solution

Sketch each situation, showing the principal angle of 43° .

(a) The first positive coterminal angle for 43° is $360^{\circ} + 43^{\circ} = 403^{\circ}$.

- (b) The second coterminal angle is $360^\circ + 360^\circ + 43^\circ = 763^\circ$.
- (c) The first negative coterminal angle is $-360^{\circ} + 43^{\circ} = -317^{\circ}$.

- For the given angles, determine:
- (a) the principle angle
- (b) the related acute angle (or reference angle)
- (c) the next 2 positive and negative co-terminal angles

(i) 143°
(ii) −132°
(iii) 419°
(iv) −60°

(C) Ordered Pairs & Right Triangle Trig

 To help discuss angles in a Cartesian plane, we will now introduce ordered pairs to place on the terminal arm of an angle

 $90^{\circ} < \theta_1 < 180^{\circ}$ θ_1 terminates in quadrant II.

 $180^{\circ} < \theta_2 < 270^{\circ}$ θ_2 terminates in quadrant III.

P(x, y) lies in the negative *y*-axis. $\theta_3 = 270^{\circ}$

(C) Ordered Pairs & Right Triangle Trig

- So to revisit our trig ratios now in the context of the xy co-ordinate plane:
- We have our simple right triangle drawn in the first quadrant

$$\sin\theta = \frac{o}{h} = \frac{y}{r} \qquad \csc\theta = \frac{h}{o} = \frac{r}{y}$$
$$\cos\theta = \frac{a}{h} = \frac{x}{r} \qquad \sec\theta = \frac{h}{a} = \frac{r}{x}$$
$$\tan\theta = \frac{o}{a} = \frac{y}{x} \qquad \cot\theta = \frac{a}{o} = \frac{x}{y}$$

(C) Ordered Pairs & Right Triangle Trig

- Point P (-3, 4) is on the terminal arm of an angle, θ, in standard position.
- (a) Sketch the principal angle, θ and show the related acute/reference angle
- **(b)** Determine the values of all six trig ratios of θ .
- (c) Determine the value of the related acute angle to the nearest degree and to the nearest tenth of a radian.
- (d) What is the measure of θ to the nearest degree and to the nearest tenth of a radian?

(C) Ordered Pairs & Right Triangle Trig -Examples

- Point P(-9, 4) is on the terminal arm of an angle in standard position.
 - (a) Sketch the principal angle, θ .
 - (b) What is the measure of the related acute angle to the nearest degree?
 - (c) What is the measure of θ to the nearest degree?

Point P(-5, -3) is on the terminal arm of an angle, θ , in standard position.

- (a) Sketch the principal angle, θ .
- (b) What is the measure of the related acute angle to the nearest degree?
- (c) What is the measure of θ to the nearest degree?
- (d) What is the measure of the first negative coterminal angle?

Point P(-5, -8) is on the terminal arm of an angle, θ , in standard position. Determine all values of θ for $-540^{\circ} \le \theta \le 270^{\circ}$. (C) Ordered Pairs & Right Triangle Trig -Examples

Determine the angle that the line 2y + x = 6 makes with the positive x axis