(A) Lesson Context

BIG PICTURE of this UNIT:	 What is a Polynomial and how do they look? What are the attributes of a Polynomial? How do I work with Polynomials? 		
CONTEXT of this LESSON:	Where we've been We have discussed the basic appearance of graphs of polynomial functions and the process of synthetic division	Where we are How can we determine the zeroes of a polynomial function when the equation is in standard form?	Where we are heading What are the key attributes of a polynomial and how do these affect the shape?

(B) Lesson Objectives:

- a. Use the process of Synthetic Division to develop new understandings about polynomial roots and factors
- b. Work toward developing an understand the connection between roots, zeroes and factors.
- c. Factor and sketch polynomial functions when equations are presented in standard form.

(C) KEY POINTS FROM Lesson 4.4

- 1. The process of synthetic division can be used to evaluate a polynomial at a given value for x
- 2. If P(x) is divided by (x R) and there is NO remainder, then (x R) is a FACTOR of P(x)
- 3. If (x R) is a linear factor of the polynomial P(x), then then the graph has an x-intercept at x = R

(D) Opening Exercises: Working with the Divisor (ax+b)

Divide $P(x) = 4x^3 - 2x^2 - 6x - 1$ by $2x - 1$ using SD	Show that $2x - 3$ is a factor of $P(x) = 2x^3 + x^2 - 22x - 24$
Divide $P(x) = 2x^3 - x^2 - 7x + 6$ by $2x + 3$ using SD	Show that $3x - 5$ is a factor of $P(x) = 6x^3 - 7x^2 - 14x + 15$

(E) Factoring Cubics where a = 1: Practicing the BASICS

Use synthetic division to help answer the following questions:

Example #1 Example #3

Factor $x^3 + 2x^2 - 11x - 12$ Factor $P(x) = x^3 - 4x^2 - 17x + 60$

Example #2 Example #4

Factor $P(x) = x^3 + 4x^2 - 4x - 16$ Factor $P(x) = x^3 - x^2 - 5x - 3$

(F) Extending Skills: Factoring Cubics where a ≠ 1: Extending the BASICS

Use synthetic division to help answer the following questions:

Example #1 Example #3

Factor $2x^3 - x^2 - 7x + 6$ Factor $P(x) = 2x^3 + x^2 - 22x + 24$

Example #2 Example #4

Factor $P(x) = 3x^3 + x^2 - 22x - 24$ Factor $P(x) = 6x^3 - 7x^2 - 14x + 15$

(G) Extending Skills: Factoring Cubics: Irrational roots: Extending the BASICS

Use synthetic division to help answer the following questions:

Example #1 Example #3

Factor $x^3 - 9x + 10$ Factor $P(x) = 2x^3 + 5x^2 + x - 2$

Example #2 Example #4

Factor $P(x) = x^3 + 5x^2 - 2x - 6$ Factor $P(x) = 3x^3 - 7x^2 + 2x + 2$

(H) Further Examples

- 1. Which binomials are factors of $P(x) = 2x^3 x^2 7x + 6$? (a) x + 3 (b) 2x 3
- 2. Which binomials are factors of $P(x) = -2x^4 7x^3 + 22x^2 + 63x 36$? (a) x 1 (b) x 3
- 3. Given the polynomial $P(x) = x^3 2x^2 21x 18$, is x = 6 a zero of P(x)? is x = -2 a zero of P(x)?
- 4. Given the polynomial $P(x) = x^4 3x^3 + 3x^2 3x + 2$, is x = 2 a root of P(x)? is x = -2 a root of P(x)?
- 5. Given the polynomial $g(x) = 2x^3 + x^2 27x 35$, one factor of x + 3 is given. Determine the other factors.
- 6. Factor $P(x) = x^4 6x^3 + 22x^2 30x + 13$ given that x = 1 is a double root.
- 7. Given the polynomial $h(x) = x^4 + 3x^3 x 3$, one of the roots is x = -3. Determine the other roots.
- 8. Determine all roots of the polynomial $A(x) = x^3 + x^2 7x + 2$, given the following graph of A(x)

- 9. Factor using the Factor Theorem: $f(x) = x^3 3x^2 10x + 24$
- 10. Factor using the Factor Theorem: $f(x) = x^4 + 2x^3 23x^2 24x + 144$
- 11. Sketch the function $g(x) = 6 + 5x 2x^2 x^3$
- 12. Sketch the function $f(x) = 3x^3 + x^2 22x 24$ & label all intercepts.
- 13. Sketch the function $f(x) = x^4 + x^3 7x^2 x + 6$ & label all intercepts.

More on Factors, Zeros, and Dividing

Factor each and find all zeros. One factor has been given.

1)
$$f(x) = x^3 + 9x^2 + 23x + 15$$
; $x + 5$

1)
$$f(x) = x^3 + 9x^2 + 23x + 15$$
; $x + 5$ 2) $f(x) = x^3 - x^2 - 14x + 24$; $x - 3$

3)
$$f(x) = x^4 + 3x^3 - 13x^2 - 15x$$
; $x - 3$

3)
$$f(x) = x^4 + 3x^3 - 13x^2 - 15x$$
; $x - 3$ 4) $f(x) = x^3 - 12x^2 + 47x - 60$; $x - 3$

5)
$$f(x) = x^3 - 7x^2 + 2x + 40$$
; $x - 5$

6)
$$f(x) = x^3 - 3x^2 - 9x + 27$$
; $x - 3$

7)
$$f(x) = 10x^3 + 37x^2 + 37x + 6$$
; $5x + 1$

8)
$$f(x) = 25x^3 + 150x^2 + 131x + 30$$
; $5x + 3$

9)
$$f(x) = 5x^3 + 21x^2 - 21x - 5$$
; $x + 5$

10)
$$f(x) = 3x^3 - 4x^2 - 9x + 10$$
; $x - 2$

11)
$$f(x) = 5x^3 + 9x^2 - 26x - 24$$
; $x + 3$

12)
$$f(x) = 6x^3 + 7x^2 - 1$$
; $2x + 1$

Factor each and find all zeros. One zero has been given.

13)
$$f(x) = 5x^3 + 4x^2 - 20x - 16$$
; 2

14)
$$f(x) = 25x^4 - 40x^3 - 19x^2 - 2x$$
; $-\frac{1}{5}$

15)
$$f(x) = 3x^4 + 5x^3 + 81x + 135; -\frac{5}{3}$$

16)
$$f(x) = 2x^4 - x^3 - 18x^2 + 9x$$
; -3

17)
$$f(x) = 10x^3 - 41x^2 + 32x + 20; \frac{5}{2}$$

18)
$$f(x) = 3x^3 + 4x^2 - 35x - 12$$
; 3

More on Factors, Zeros, and Dividing

Factor each and find all zeros. One factor has been given.

1)
$$f(x) = x^3 + 9x^2 + 23x + 15$$
; $x + 5$
Factors to: $f(x) = (x + 1)(x + 3)(x + 5)$
Zeros: $\{-1, -3, -5\}$

2)
$$f(x) = x^3 - x^2 - 14x + 24$$
; $x - 3$
Factors to: $f(x) = (x - 2)(x + 4)(x - 3)$
Zeros: $\{2, -4, 3\}$

3)
$$f(x) = x^4 + 3x^3 - 13x^2 - 15x$$
; $x - 3$
Factors to: $f(x) = x(x+1)(x+5)(x-3)$
Zeros: $\{0, -1, -5, 3\}$

4)
$$f(x) = x^3 - 12x^2 + 47x - 60$$
; $x - 3$
Factors to: $f(x) = (x - 4)(x - 5)(x - 3)$
Zeros: $\{4, 5, 3\}$

5)
$$f(x) = x^3 - 7x^2 + 2x + 40$$
; $x - 5$
Factors to: $f(x) = (x + 2)(x - 4)(x - 5)$
Zeros: $\{-2, 4, 5\}$

6)
$$f(x) = x^3 - 3x^2 - 9x + 27$$
; $x - 3$
Factors to: $f(x) = (x + 3)(x - 3)^2$
Zeros: $\{-3, 3 \text{ mult. } 2\}$

7)
$$f(x) = 10x^3 + 37x^2 + 37x + 6$$
; $5x + 1$
Factors to: $f(x) = (2x + 3)(x + 2)(5x + 1)$
Zeros: $\left\{-\frac{3}{2}, -2, -\frac{1}{5}\right\}$

8)
$$f(x) = 25x^3 + 150x^2 + 131x + 30$$
; $5x + 3$
Factors to: $f(x) = (5x + 2)(x + 5)(5x + 3)$
Zeros: $\left\{-\frac{2}{5}, -5, -\frac{3}{5}\right\}$

9)
$$f(x) = 5x^3 + 21x^2 - 21x - 5$$
; $x + 5$
Factors to: $f(x) = (5x + 1)(x - 1)(x + 5)$
Zeros: $\left\{-\frac{1}{5}, 1, -5\right\}$

10)
$$f(x) = 3x^3 - 4x^2 - 9x + 10$$
; $x - 2$
Factors to: $f(x) = (3x + 5)(x - 1)(x - 2)$
Zeros: $\left\{-\frac{5}{3}, 1, 2\right\}$

11)
$$f(x) = 5x^3 + 9x^2 - 26x - 24$$
; $x + 3$
Factors to: $f(x) = (5x + 4)(x - 2)(x + 3)$
Zeros: $\left\{-\frac{4}{5}, 2, -3\right\}$

12)
$$f(x) = 6x^3 + 7x^2 - 1$$
; $2x + 1$
Factors to: $f(x) = (3x - 1)(x + 1)(2x + 1)$
Zeros: $\left\{\frac{1}{3}, -1, -\frac{1}{2}\right\}$

Factor each and find all zeros. One zero has been given.

13)
$$f(x) = 5x^3 + 4x^2 - 20x - 16$$
; 2
Factors to: $f(x) = (5x + 4)(x + 2)(x - 2)$
Zeros: $\left\{-\frac{4}{5}, -2, 2\right\}$

14)
$$f(x) = 25x^4 - 40x^3 - 19x^2 - 2x$$
; $-\frac{1}{5}$
Factors to: $f(x) = x(5x+1)^2(x-2)$
Zeros: $\left\{0, -\frac{1}{5} \text{ mult. } 2, 2\right\}$

15)
$$f(x) = 3x^4 + 5x^3 + 81x + 135; -\frac{5}{3}$$

Factors to: $f(x) = (x+3)(x^2 - 3x + 9)(3x + 5)$
Zeros: $\left\{-3, \frac{3+3i\sqrt{3}}{2}, \frac{3-3i\sqrt{3}}{2}, -\frac{5}{3}\right\}$

16)
$$f(x) = 2x^4 - x^3 - 18x^2 + 9x$$
; -3
Factors to: $f(x) = x(2x - 1)(x - 3)(x + 3)$
Zeros: $\left\{0, \frac{1}{2}, 3, -3\right\}$

17)
$$f(x) = 10x^3 - 41x^2 + 32x + 20; \frac{5}{2}$$

Factors to: $f(x) = (5x + 2)(x - 2)(2x - 5)$
Zeros: $\left\{-\frac{2}{5}, 2, \frac{5}{2}\right\}$

18)
$$f(x) = 3x^3 + 4x^2 - 35x - 12$$
; 3
Factors to: $f(x) = (3x + 1)(x + 4)(x - 3)$
Zeros: $\left\{-\frac{1}{3}, -4, 3\right\}$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com