(A) Lesson Context

BIG PICTURE of this UNIT:	 What is a Polynomial and how do they look? What are the attributes of a Polynomial? How do I work with Polynomials? 		
CONTEXT of this	Where we've been	Where we are	Where we are heading
CONTEXT of this			
LESSON:	We have discussed the	How can we use algebraic skills & process	What are the key
	basic appearance of	to begin an analysis of polynomials when	attributes of a
	graphs of polynomial	we DO NOT have a graphic representation	polynomial and how do
	functions	with which to work?	these affect the shape?

(B) Lesson Objectives:

- a. Understand the connection between division of numbers and division of polynomials.
- b. Simply the "long division" process and work with the method of synthetic division in order divide polynomials.

(C) Opening Exericises: The Process of Long Division

(a) Divide 3825 by 51

(TERMS to highlight: divisor, quotient, remainder)

(b) Divide 41,764 by 32

(TERMS to highlight: divisor, quotient, remainder)

(D) Extension of Ideas: Long Division of Polynomials

(a) Divide
$$x^2 + 3x - 28$$
 by $x + 5$

(b) Divide
$$x^3 - 7x + 8$$
 by $x - 2$

(c) Divide
$$2x^2 - 5x - 3$$
 by $x - 4$

(E) Simplify Algorithms: Synthetic Division: (And compare the 2 processes)

(a) Divide
$$x^2 + 3x - 28$$
 by $x + 5$

(b) Divide
$$x^3 - 7x + 8$$
 by $x - 2$

(c) Divide
$$2x^2 - 5x - 3$$
 by $x - 4$

(F) Further Practice with Synthetic Division

- (a) Divide $x^3 7x 6$ by $x + 1 \Rightarrow$ conclusion?
- (b) Divide $4x^3 5x^2 + 3x 7$ by x 2

Point to be made: different ways to express your final result

- (c) Divide $13x 2x^3 + x^4 6$ by $x + 2 \Rightarrow$ conclusion?
- (d) Divide $12x^3 + 2x^2 + 11x + 16$ by $3x + 2 \implies$ what's different and how do we deal with it?

(G) Further Practice

From Nelson 12, Exercise 1.4, page 42, Q4,8,9 (HL challenge) & 10,11