BIG PICTURE of this UNIT:	 How & why do we build NEW knowledge in Mathematics? What NEW IDEAS & NEW CONCEPTS can we now explore with specific references to QUADRATIC FUNCTIONS? How can we extend our knowledge of FUNCTIONS, given our BASIC understanding of Functions? 		
CONTEXT of this LESSON:	Where we've been In Lesson 1, you were reviewed the graphs and algebra of quadratic functions as per IM2	Where we are HOW does the transformation of the parent function $y = x^2$, help us understand the "vertex form" of quadratic functions	Where we are heading How do we extend our knowledge & skills of quadratic functions, given the new ideas & concepts we now know about functions.

A. Lesson Context

B. Lesson Objectives

- a. Review KEY FEATURES of parabolas
- b. Investigate the role of the parameters **a**, **h** and **k** in the equation $y = a(x h)^2 + k$ and relate that role to the concept of TRANSFORMATIONS
- c. Apply the idea of transforming a parent function to (i) contextual applications & (ii) further functions

C. Fast Five (Skills Review Focus)

Given the quadratic function $f(x) = -\frac{1}{2}(x+8)(x-6)$:

- (a) find the zeroes
- (b) find the axis of symmetry
- (c) find the vertex
- (d) find the y-intercept
- (e) write the equation in standard form
- (f) Sketch the parabola, labelling key features

D. Practicing with Transforming Quadratics

Example 1 (CI): You are given graphs of parabolas in the form of $y = (x - h)^2 + k$. PREDICT the equations of each one & give a reason for your prediction. The parent function, $y = x^2$, is the red curve.

Example 2 (CI): Sketch the graph of $y = 2(x + 4)^2 - 3$ by transforming the graph of $y = x^2$. Sketch both graphs, label each graph.

Label the points (1,1) and (-1,1) on the parent function. Then label the corresponding, transformed points (i.e. where do these two original points wind up, AFTER the transformation?)

- **E.** Example #1: Sketch the parabola $f(x) = 2(x 3)^2 8$ by HAND (NO TECH) by working through the following steps:
 - a. Start with the graph of the parent function, y = x². Label 3 points. State the location of the "optimal point" (i.e. vertex)
 - b. List the required transformations, given that the "new" equation is $f(x) = 2(x 3)^2 8$
 - c. Now apply the transformations to $y = x^2$ and graph the "new" parabola. Label three (3) points. State the location of the optimal point (vertex)

d. ANALYSIS QUESTION: How is the location of the vertex of the parabola "predictable", given the equation with which you started (i.e. $f(x) = 2(x - 3)^2 - 8$)

F. <u>Example #2</u>: Sketch the parabola $g(x) = -3(x+5)^2 + 12$ and label the key points (vertex, y-intercept, x-intercept(s), axis of symmetry

G. Example #3:

A company's profit, in thousands of dollars, on sales of computers is modelled by the function $C(x) = -2(x - 3)^2 + 50$, where x is in thousands of computers sold.

- a. Explain what C(1) = 42 means in the context of this problem.
- b. What is the maximum profit that the company can reach when they sell computers.

To increase their profitability, the company sells anti-virus software. Their profit, in thousands of dollars, on sales of antivirus software is modelled by the function S(x) = -2(x - 2)(x - 8), where x is in thousands of software packages sold.

- c. Explain what S(6) = 16 means in the context of this problem.
- d. What is the maximum profit that the company can reach when they sell software packages.

HL EXTENSION: As a promotional offer, the company now puts the computers and anti-virus software together as a "special package" and reduces the price of the total package by \$75. Assuming that the profit models remain the same (i.e. C(x) and S(x)), determine the maximum profit that the company can earn.