A. Lesson Context

BIG PICTURE of this UNIT:	 How & why do we build NEW knowledge in Mathematics? How can we extend our knowledge of FUNCTIONS, given our BASIC understanding of Functions? 					
CONTEXT of this LESSON:	Where we've been In Lesson 4, you were introduced to parent functions	Where we are WHY & HOW do we transform parent functions, specifically a quadratic function	Where we are heading How do we extend our knowledge & skills of quadratic functions, given the new ideas & concepts we now know about functions.			

B. Lesson Objectives

- a. Review KEY IDEAS in our parent function, $y = x^2$
- b. Investigate the role of the parameters h and k in the equation $y = (x h)^2 + k$ and relate that role to the concept of TRANSFORMATIONS
- c. Apply the idea of transforming a parent function to (i) contextual applications & (ii) further functions

C. Rationale: (Why transform functions?)

Go to each of the following links. Each link will take you to a contextual data set and a parent function. Your initial task is to adjust the sliders in order to transform the parent function, such that the transformed parent function is now a "curve of best fit" for the data set.

Record the following (i) types of transformations you made to the parent function; (ii) final "function equation" of the transformed parent function & (iii) record the final equation of the new function that models the trend in the data.

Link #1: Quadratic Data → https://www.desmos.com/calculator/kxz9hhbvnk (crop yield vs amount of fertilizer)

Link #2: Exponential Data → https://www.desmos.com/calculator/yupdpv5ikb (temp of cup of coffee vs time)

Link #3: Periodic Data → https://www.desmos.com/calculator/hzj9xpdgm1 (weather (temp) vs months of year)

D. Observation Table for Exploration

What is the relationship between the value of the <u>parameters</u> h and k in the equation $y = (x - h)^2 + k$ and the **location** of the graph of the function. How do we DESCRIBE the change in the appearance of the graph?

- 1. Enter y = x^2 into Y1 of the equation editor of your GDC (or DESMOS): <u>windows</u>: $(-9.4 \le x \le 9.4)$ and then $-9.4 \le y \le 9.4$)
- 2. To investigate the effect of \mathbf{k} , enter an equation of the form $y = x^2 + \mathbf{k}$ into Y2 using $\mathbf{k} = -4, -1, 2, 5, 7$. Record your **comparisons** of the new graphs to the graph of your parent function.

2.

3. On the table below, record your findings from your parabolas in Q2.

Value of k	Equation	Distance and direction from $y = x^2$	Vertex
0	y = x ²	Not applicable	(0,0)
-4			
-1			
2			
5			
7			

4. To investigate the effect of h, enter an equation of the form $y = (x - h)^2$ into Y2 using h = -4, -1, 2, 5, 7. Record your **comparisons**.

4.

5. On the table below, record your findings from your parabolas in Q3

Value of k	Equation	Distance and direction from $y = x^2$	Vertex
0	y = x ²	Not applicable	(0,0)
-4			
-1			
2			
5			
7			

- 6. Identify the type of transformations that have been 6. applied to the parent function to obtain the graphs as recorded in your tables in parts 3 and 5. 7. Make a conjecture about how you could predict the 7.
- equation of a parabola if you knew the translations that were applied to the graph of $y = x^2$

8. Complete this table to investigate and test your conjecture from part 7.

Value of h	Value of k	Equation	Relationship to $y = x^2$		Vertex
			Left/right	Up/down	
0	0	$y = x^2$	N/A	N/A	(0,0)
			Left 3	Down 5	
4	1				
					(-2,6)
		$y = (x + 5)^2 - 3$			

- 9. CONSOLIDATING: If the equation of a quadratic function 9. is given in the form of $y = (x - M)^2 + N$, what can you conclude about its vertex? About its axis of symmetry?
 - 10. REFLECTING: What happens to the x coordinates of all the points on the graph of $y = x^2$ when the parameters hand k in $y = (x - h)^2 + k$ are changed?

10.

11. REFLECTING: What happens to the y coordinates of all the points on the graph of $y = x^2$ when the parameters hand k in $y = (x - h)^2 + k$ are changed?

11.

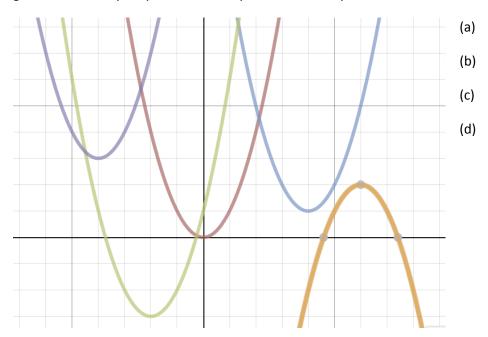
12. REFLECTING: State the values of **h** and **k** that cause the following **TRANSFORMATIONS** of $y = (x - h)^2 + k$:

12.

- (a) horizontal translation left
- (b) horizontal translation right:
- (c) vertical translation up:
- (d) vertical translation down:

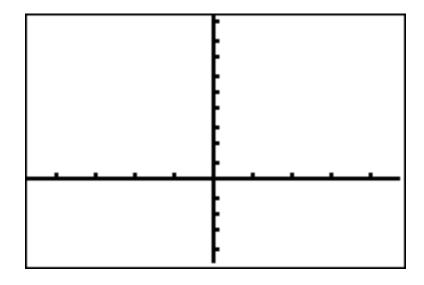
E. Practicing with Transforming Quadratics

Example 1 (CI): You are given graphs of parabolas in the form of $y = (x - h)^2 + k$. PREDICT the equations of each one & give a reason for your prediction. The parent function, $y = x^2$, is the red curve.



Example 2 (CI): Sketch the graph of $y = (x + 4)^2 - 3$ by transforming the graph of $y = x^2$. Sketch both graphs, label each graph.

Label the points (1,1) and (-1,1) on the parent function. Then label the corresponding, transformed points (i.e. where do these two original points wind up, AFTER the transformation?)



F. Extending the Concepts

Example 4: Working with a Piecewise defined function. A function, y = f(x) is illustrated on the grid.

You are required to produce a graph of a new function, called g(x), which is a TRANSFORMATION of f(x) as defined below:

(a)
$$g(x) = f(x-2) - 1$$

(b)
$$g(x) = f(x + 1) - 3$$

(c)
$$g(x) = 3 - f(2 + x)$$

In each sketch, label KEY points very clearly.

