A. Lesson Context

BIG PICTURE of this UNIT:	 What is meant by the term FUNCTIONS and how do we work with them? mastery with working with basics & applications of linear functions mastery with working with basics & applications of linear systems understanding basics of function concepts and apply them to lines & linear systems 		
CONTEXT of this LESSON:	Where we've been In Lessons 1-3, you practiced with various skills related to linear functions & in IM2 you have worked with Linear Systems	Where we are Review of skills related to using algebraic & graphic methods for solving systems	Where we are heading How do we apply the concept of "functions" to linear relations & linear systems.

B. Lesson Objectives

- a. Write pairs of equations to model real world scenarios involving two unknowns.
- b. Reviewing algebraic methods for solving simultaneous linear equations (elimination & substitution)

C. Opening Exercises (SKILL REVIEW):

- A. Use the substitution method to solve for x & y in this B. Use the elimination method to solve for x & y in this system: L_1 : 2x - 5y = 17 and L_2 : x + 2y = 4.
 - system: L_1 : -3x + 6y = 21 and L_2 : 2x + 5y = -11.

- C. Use any algebraic method to solve the following system: L_1 : 2x + 3y = 7 and L_2 : -2x - 1 = y.
- D. Use any algebraic method to solve the following system: L_1 : 5x + 2y = 18 and L_2 : 2x + 3y = 16.
- E. Use any algebraic method to solve the following system: L_1 : 3x + 21 = 5y and L_2 : 4y + 6 = -9x.
- F. Use any algebraic method to solve the following system: L_1 : 15 – 6y = 9x and L_2 : 3x + 2y = 8.

G. Linear Systems: Solutions Using Technology

Let's return to our Review Example A and Example B:

Use the substitution method to solve for x & y in this system: L_1 : 2x - 5y = 17 and L_2 : x + 2y = 4.

system: L_1 : -3x + 6y = 21 and L_2 : 2x + 5y = -11.

Use the elimination method to solve for x & y in this

- (a) Mr S. wants to ALGEBRAICALLY test if the point (-4,5) is the intersection point. Verify whether or not this is true.
- (a) Mr S. wants to ALGEBRAICALLY test if the point (2,-3) is the intersection point. Verify whether or not this is true.

- (b) Use your graphing calculator to GRAPHICALLY determine the intersection point of L₁ & L₂.
- (b) Use your graphing calculator to GRAPHICALLY determine the intersection point of L₁ & L₂.
- (c) Prepare a properly labelled & presented sketch, showing the solution to the system.
- (c) Prepare a properly labelled & presented sketch, showing the solution to the system.

- (d) Use your calculator's PLYSMLT2 APP to solve the system.
- (d) Use your calculator's PLYSMLT2 APP to solve the system.