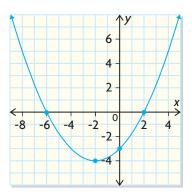
Chapter Self-Test

- **1.** State the zeros, vertex, and equation of the axis of symmetry of the parabola at the right.
- **2.** The points (-9, 0) and (19, 0) lie on a parabola.
 - a) Determine an equation for its axis of symmetry.
 - **b)** The *y*-coordinate of the vertex is -28. Determine an equation for the parabola in factored form.
 - c) Write your equation for part b) in standard form.
- **3.** Decide, without graphing, whether each data set can be modelled by a quadratic relation. Explain how you made your decision.
 - a) **b**) 1 3 Х 0 2 0 2 1 X -1 2 -3 -14 -31 y -4 -3 0 1 y
- **4.** Sketch each graph. Label the intercepts and the vertex using their coordinates.

a)
$$y = (x - 6)(x + 2)$$
 b) $y = -(x - 6)(x + 4)$

- 5. The population, P, of a city is modelled by the equation $P = 14t^2 + 820t + 42000$, where t is the time in years. When t = 0, the year is 2008.
 - a) Determine the population in 2018.
 - **b**) When was the population about 30 000?
- 6. Expand and simplify.


a) (2x - 3)(5x + 2) **b)** (3x - 4y)(5x + 2y) **c)** $-5(x - 4)^2$

7. A toy rocket is placed on a tower and launched straight up. The table shows its height, *y*, in metres above the ground after *x* seconds.

Time, <i>x</i> (s)	0	1	2	3	4	5	6	7	8
Height, y (m)	16	49	72	85	88	81	64	37	0

- a) What is the height of the tower?
- **b**) How long is the rocket in flight?
- c) Do the data in the table represent a quadratic relation? Explain.
- d) Create a scatter plot. Then draw a curve of good fit.
- e) Determine the equation of your curve of good fit.
- f) What is the maximum height of the rocket?
- **8.** In what ways is modelling a problem using a quadratic relation similar to using a linear relation? In what ways is it different?
- 9. Evaluate.

a)
$$7^{-2}$$
 b) -3^{0} **c)** $-\left(\frac{2}{3}\right)^{-4}$ **d)** -5^{-3}

Process Checklist

3

5

4

12

- Question 2: Did you relate the characteristics of the graphical representation of the relation with its equation?
- Questions 5 and 7: Did you select appropriate problem solving strategies for each situation?
- Question 8: Did you make connections to communicate a variety of ways to relate modelling with linear and quadratic relations?