#### (A) Lesson Context

| BIG PICTURE of this UNIT: | <ul> <li>How do we analyze and then work with a data set that shows both increase and decrease</li> <li>What is a parabola and what key features do they have that makes them useful in modeling applications</li> <li>How do I use graphs, data tables and algebra to analyze quadratic equations?</li> </ul> |                                                                                                                                                                       |                                                                                                                                                           |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTEXT of this LESSON:   | In Lesson 3, you investigated the main features of the graphs of parabolas and how to find these features using a graph or graphing calculator                                                                                                                                                                 | Where we are  How can we use the equation & algebra to help find the special features of the graphs of quadratic relations – so is there a graph & algebra connection | Where we are heading  How can I use graphs of quadratic relations to make predictions from quadratic data sets & quadratic models and quadratic equations |

## (A) Lesson Objectives

- a. Determine how to calculate the key features of a parabola from its equation in factored form
- b. Determine the equation of a parabola (in factored form) when given a graph
- c. Present real world applications involving zeroes or parabola

# (B) Fast Five

- a. Ex 1  $\rightarrow$  For the quadratic relation y = (x + 3)(x 4), determine:
  - i. The direction of opening.
  - ii. The zeroes
  - iii. The optimal point.
  - iv. The y-intercept.
  - v. Sketch the parabola.
- b. Ex 2 → The zeroes of a parabola are -3 and 5. The graph crosses the y-axis at -75. Determine:
  - i. if the relation have a maximum or minimum value?
  - ii. the equation of the quadratic relation.
  - iii. the co-ordinates of the vertex.
  - iv. Sketch the parabola.

# (D)Consolidation of Investigations → Key Points

- a. Equations in the form of y = a(x s)(x t) are \_\_\_\_\_\_, provided that \_\_\_\_\_\_.
- b. The equation written the form y = a(x s)(x t) is said to be in \_\_\_\_\_\_\_
- c. If a > 0, the parabola opens \_\_\_\_\_ and has \_\_\_\_\_.
- d. If a < 0, the parabola opens and has .
- e. The zeroes of the quadratic can be determined by setting \_\_\_\_\_ and solving \_\_\_\_\_. The zeroes are then located \_\_\_\_\_\_\_.
- f. If the zeroes are known, then the axis of symmetry can be found  $\rightarrow$  \_\_\_\_\_\_.
- h. The value of **a** can be determined IF\_\_\_\_\_\_\_. All known values are substituted into y = a(x - s)(x - t) and then solve for a.

# (E) Determining Equations from Graphs

Determine the equations of the following graphs (or listed information), recalling that the equation of a quadratic function in factored form is f(x) = a(x - R)(x - S)

(a)



(b)



(c)



(d)



- (e) the zeroes are at x = 7 and x = -3, and the y-intercept is at -63
- (f) the x-intercepts are (5,0) and (-2,0) and the minimum value is -24.5

- (g) one zero is at 4 and the vertex is at (1,-45)
- (g) one zero is at -6 and two points are at (-4,-24) and at (2,-24)

### (F) Application/Context Problems

- a. Ex 1 > Mr. S throws a ball upward from the roof of the building that is 25m tall. The ball reaches a height of 45m above the ground after 2s and hits the ground 5s after being thrown.
  - i. Draw an accurate graph of the height of ball and the time in flight.
  - ii. What are the zeroes of the relation?
  - iii. What are the co-ordinates of the vertex?
  - iv. Determine an equation that models this situation.
  - v. What is the meaning of each zero?

#### b. Ex 2

Application: Angus is playing golf. The diagram (not to scale) shows him making a perfect shot to the pin. Determine the height of the ball when it is 15 m from the hole by using the information in the diagram to determine a quadratic relation for height vs. distance travelled.



#### c. Ex 3

- 17. This table gives the height of a golf ball at different times during its flight.
  - (a) Create a scatter plot and draw a graph of best fit.
  - (b) Use the graph to approximate the zeros of the relation.
  - (c) Find an algebraic expression that models the flight of the ball.
  - (d) Use the expression to determine the maximum height of the ball.

| Time (s) | Height (m) |  |
|----------|------------|--|
| 0.0      | 0.000      |  |
| 0.5      | 10.175     |  |
| 1.0      | 17.900     |  |
| 1.5      | 23.175     |  |
| 2.0      | 26.000     |  |
| 2.5      | 26.375     |  |
| 3.0      | 24.300     |  |
| 3.5      | 19.775     |  |
| 4.0      | 12.800     |  |
| 4.5      | 3.375      |  |
|          |            |  |



- d. Ex 4  $\Rightarrow$  a company called SAMSOONG introduces a new cellphone and its PROFITS are modelled by the equation P(m) =  $-5m^2 + 80m 100$  where m is time in months and P(m) is the profit in millions of dollars. The cellphone is sold for a period of 2 years.
  - i. Graph the profit function on your TI-84.
  - ii. Calculate the zeroes of the quadratic and interpret what they mean.
  - iii. Write the equation in factored form, given your work in (ii).
  - **iv.** Calculate the co-ordinates of the vertex and interpret.
  - **V.** Evaluate P(5) and interpret.
  - **Vi.** Solve P(m) = -25 and interpret
  - **Vii.** Solve P(m) < 0 and interpret
  - **Viii.** For what values of m are the profits DECREASING? Explain how you determined your answer.

### (G)EXIT TICKET

Given the following sets of 10 graphs, 10 equations and 10 data tables, match the corresponding graphs to data tables to equations