(A) Lesson Context

BIG PICTURE of this UNIT:	 How do we analyze and then work with a data set that shows both increase and decrease What is a parabola and what key features do they have that makes them useful in modeling applications How do I use graphs, data tables and algebra to analyze quadratic equations? 		
CONTEXT of this LESSON:	In Lesson 3, you investigated the main features of the graphs of parabolas and how to find these features using a graph or graphing calculator	Where we are How can we use the equation & algebra to help find the special features of the graphs of quadratic relations — so is there a graph & algebra connection	Where we are heading How can I use graphs of quadratic relations to make predictions from quadratic data sets & quadratic models and quadratic equations

(A) Lesson Objectives

- a. Introduce the factored form of the equation of a quadratic relation by means of investigations
- b. Determine how to calculate the key features of a parabola from its equation in factored form
- c. Present real world applications involving zeroes or parabola

(B) Investigation – Investigating the Graphs of Quadratic Functions & Factored Form

QUESTION \rightarrow All of the quadratics you will graph are presented in the form of y = a(x - s)(x - t). How do the values of **a**,**s**,**t** affect the graph?

To record your groups findings & ideas → open a google doc & share it with your group members & with me

- 1. Use a graphing calculator (or use <u>www.desmos.com</u>) to graph y = a(x-2)(x+6) when a = 3. Describe what happens to the graph as you change the value of α to 2, 1, $\frac{1}{2}$, $\frac{1}{2}$, 0, -1, -2, -3. Include sketches. Where is the axis of symmetry in each parabola?
- 2. Graph y = 2(x s)(x + 5) when s = 3. Describe what happens to the graph as you change the value of s to 2, 1, 0, -1, -2, -3. Include sketches.
- 3. Find the axis of symmetry of each parabola you investigated in Q2.
- 4. Which of the quantities **a**, **s**, or **t** affects whether the graph has a maximum or a minimum value? How can you PREDICT where a parabola has a maximum or minimum?
- 5. Which of the quantities α , s, or t affects where the graph has a zeroes? How can you PREDICT where a parabola has its zeroes?

(C) Consolidation of Investigations → Key Points

a. Equations in the form of y = a(x - s)(x - t) are ______, provided that ______.

b. The equation written the form y = a(x - s)(x - t) is said to be in _______.

C. If a > 0, the parabola opens _____ and has _____.

d. If a < 0, the parabola opens _____ and has _____.

e. The zeroes of the quadratic can be determined by setting _____ and solving _____.

The zeroes are then located ______.

f. If the zeroes are known, then the axis of symmetry can be found → ______.

h. The value of **a** can be determined IF_______. All known values are substituted

into y = a(x - s)(x - t) and then solve for a.

(D) Examples

- **a.** Ex 1 \rightarrow For the quadratic relation y = (x + 3)(x 4), determine:
 - i. The direction of opening.
 - ii. The zeroes
 - iii. The optimal point.
 - iv. The y-intercept.
 - v. Sketch the parabola.
- b. Ex 2 → The zeroes of a parabola are -3 and 5. The graph crosses the y-axis at -75. Determine:
 - i. if the relation have a maximum or minimum value?
 - ii. the equation of the quadratic relation.
 - iii. the co-ordinates of the vertex.
 - iv. Sketch the parabola.

c.

- **5.** For each relation, state
 - i. the x-intercepts
 - ii. the equation of the axis of symmetry
 - iii. the coordinates of the vertex

(a)
$$y = (x + 4)(x + 2)$$

(b)
$$y = (x + 5)(2 - x)$$

(c)
$$y = (4 + x)(1 + x)$$

(d)
$$y = (1 - x)(3 + x)$$

(e)
$$y = (x - 3)(2 - x)$$

(f)
$$y = (x + 1)(x - 4)$$

(g)
$$y = 3(x + 1)(x - 3)$$

(h)
$$y = -2(x+3)(x-3)$$

d.

7. Sketch a graph for each relation. Do not make a table of values or use graphing technology.

(a)
$$y = (x+3)(x+5)$$

(b)
$$y = (x - 3)(x - 5)$$

(c)
$$y = (x - 6)(x - 2)$$

(d)
$$y = -(x-1)(x-2)$$

(e)
$$y = 3(x-5)(x+1)$$

(f)
$$y = -2(x+2)(x+1)$$

(g)
$$y = \frac{1}{2}(x-4)(x-2)$$

(h)
$$y = -2(3 - x)(5 - x)$$

(i)
$$y = 10(x-1)(x+6)$$

e. Determine the equation of the parabola graphed below

(E) Application/Context Problems

- a. Ex 1 → Mr. S throws a ball upward from the roof of the building that is 25m tall. The ball reaches a height of 45m above the ground after 2s and hits the ground 5s after being thrown.
 - i. Draw an accurate graph of the height of ball and the time in flight.
 - ii. What are the zeroes of the relation?
 - iii. What are the co-ordinates of the vertex?
 - iv. Determine an equation that models this situation.
 - v. What is the meaning of each zero?
- **b.** Ex 2 \rightarrow a company called SAMSOONG introduces a new cellphone and its PROFITS are modelled by the equation $P(m) = -5m^2 + 80m - 100$ where m is time in months and P(m) is the profit in millions of dollars. The cellphone is sold for a period of 2 years.
 - i. Graph the profit function on your TI-84.
 - ii. Calculate the zeroes of the quadratic and interpret what they mean.
 - **iii.** Write the equation in factored form, given your work in (ii).
 - **iv.** Calculate the co-ordinates of the vertex and interpret.
 - **V.** Evaluate P(5) and interpret.
 - **Vi.** Solve P(m) = -25 and interpret
 - **Vii.** Solve P(m) < 0 and interpret
 - **Viii.** For what values of m are the profits DECREASING? Explain how you determined your answer.