(A) Lesson Context

BIG PICTURE of this UNIT:	 How can I analyze growth or decay patterns in data sets & contextual problems? How can I algebraically & graphically summarize growth or decay patterns? How can I compare & contrast linear and exponential models for growth and decay problems. 		
CONTEXT of this LESSON:	Where we've been In Lesson 1, you generated data from a variety of activities	Where we are How do we analyze data in order to determine the patterns/relationships exist in data sets that exhibit growth & decay patterns	Where we are heading How can I develop equations that will help me make predictions about scenarios which feature exponential growth & decay?

(B) Lesson Objectives:

- a. Generate data through various hands-on activities
- b. Analyze the data to look for patterns in the data that was generated
- c. Make predictions/extrapolations through numeric or algebraic analysis

(C) Fast Five (Skills Review from Gr 8)

6. Simplify the following expressions. Use only positive exponents in your answer.

A.	$\frac{32a^4b^2}{10a^2b^6} \cdot \frac{5a^2b^3}{4ab^3}$	В.	$x^6y^{-3}\left(\frac{x^2}{y^3}\right)^{-3}$	
----	---	----	--	--

2. Simplify or evaluate the following expressions. Write answers in simplest form.

A. $(8^2)^{-1}(4^{-2})^{-2}$

C.
$$(-2a)^3 (4a^2)^0 [(a)^{-2}]^4$$
D. $\frac{1}{(3x)^{-3}}$

DATA SET ANALYSIS #1

Data Set #1 \rightarrow {1,2,4,8,16,32,64,....} \rightarrow and as a data table \rightarrow

Х	0	1	2	3	4	5	6
У	1	2	4	8	16	32	64

Describe the pattern in words and with an equation

DATA SET ANALYSIS #2

Data Set #2 🛨	$\{20,60,180,540,1620\}$ \rightarrow as a data table \rightarrow

Х	0	1	2	3	4	5	6
У	20	60	180	540	1620	4860	14580

Describe the pattern in words and with an equation

DATA SET ANALYSIS #3

Data Set #2 → {320,160,80,40,20,10,5,....} → as a data table →

Х	0	1	2	3	4	5	6
У	320	160	80	40	20	10	5

Describe the pattern in words and with an equation

Data Analysis → Part I: Modeling Exponential Data

The value of Mr S car is depreciating over time. I bought the car new in 2002 and the value of my car (in thousands) over the years has been tabulated below:

Year	Value
2002	40
2003	36
2004	32.4
2005	29.2
2006	26.2
2007	23.6
2008	21.3
2009	19.1
2010	17.2

Data Analysis → Part II: Modeling Exponential Data

The value of Mr S car is depreciating over time. I bought the car new in 2002 and the value of my car (in thousands) over the years has been tabulated below:

Year	Population
1700	250
1750	370
1800	560
1850	840
1900	1270
1950	1900
2000	2850

