(A) Lesson Objectives:

- a. Exploring the midpoint and length of a line segment through dynamic geometry software (geogebra)
- b. Develop proficiency in analytic/algebraic determination of midpoints of line segments
- c. Apply the use of midpoints to problem solving questions

(B) Exploring Midpoint - through dynamic geometry software: geogebra

Open an internet browser

Using the following geometry applet (http://www.geogebratube.org/student/m12412), let's explore the midpoint

Point A is fixed at (0,0) and move Point B Record position of Point B and then aslo record the position of the midpoint \rightarrow Q? how can you predict where the midpoint should be?

Point A	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
Point B	(14,4)						
Midpoint							

Q? how can you predict where the midpoint should be?

b. Now Point A will also move and you will also move Point B > Record position of Points A and B and then aslo record the position of the midpoint \rightarrow Q? how can you predict where the midpoint should be?

Point A	(2,5)	(3,6)	(-5,-4)	(-2,-8)	(3,7)	(-2,9)	(0,-7)
Point B	(4,7)	(0,-2)	(7,-1)	(-8,6)	(-4,2)	(-6,2)	(5,0)
Midpoint							

Q? now, how can you predict where the midpoint should be?

Now Point A will be fixed at (16,-8) and you will have to move Point B to get to the requested midpoint → Record the final position B → Q? how can you predict where Point B should be?

Point A	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)
Midpoint	(0,0)	(6,-1)	(9,-6)	(12,0)	(0,-3)	(4.5,-4)	(8.5,1.5)
Point B							

Q? how can you predict where Point B should be?

(C) Exploring Length - through dynamic geometry software: geogebra

Open an internet browser → Using the following geometry applet (http://www.geogebratube.org/student/m12412), let's explore the length of a line segment

Point A is fixed at (0,0) and move Point B (the first three B coordinates have been given to you. Record position of Point B and then aslo record the length of the segment \rightarrow Q? how can you determine the length of segment?

Point A	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
Point B	(8,6)	(-15,8)	(-12,-5)			
Length						

Q? how can you determine the length of segment?

b. Now Point A will also move and you will also move Point B > Record position of Points A and B and then aslo record the length of the segment → Q? how can you determine the length of segment?

Point A	(2,5)	(3,6)	(-5,-4)	(-2,-8)	(3,7)	(0,-7)
Point B	(4,7)	(0,-2)	(7,-1)	(-8,6)	(-4,2)	(5,0)
Length						

Q? now, how can you determine the length of segment?

(D) CHALLENGE #1: Now Point A will be fixed at (16,-8) and you will have to move Point B to get to the requested length → Record the final position B → Q? how can you predict where Point B should be?

Point A	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)
Length	10	13	17	5	21.9	28.2	30
Point B							

(E) CHALLENGE #2: A line segment has an endpoint at A(5,2) and has a length of 13 units. Determine the coordinate(s) of the other endpoint. Show the algebraic reasoning/work that leads to your conclusion.

(F) Working with the Concepts

- a. Determine the midpoint of the line segment between A(1,1) and B(5,9)
- b. Determine the midpoint of the line segment between A(-1,1) and B(5,5)
- Determine the midpoint of the line segment between A(-2,6) and B(3,-4)
- d. Determine the length of the line segment between A(1,1) and B(5,9)
- e. Determine the length of the line segment between A(-1,1) and B(5,5)
- Determine the length of the line segment between A(-2,6) and B(3,-4)f.
- A line segment has an endpoint at A(5,2) and midpoint at M(9,-3). Determine the co-ordinates of the other endpoint. Show the algebraic reasoning/work that leads to your conclusion.
- h. On the design plan for a landscaping project, a straight path runs from (11,29) to (53,9). A light is going to be placed halfway along the path.
 - i. Draw a diagram that shows the path.
 - ii. Determine the co-ordinates of the lamp on your diagram
 - iii. The one lamp is not bright enough to illuminate the pathway. So two more lamps will be placed along the path, such that each lamp is placed a quarter of the distance of the path. Determine the coordinates of the other two lamps.
- A perpendicular bisector of a line segment is a second line that will (i) cut the line segment in half and (ii) be perpendicular to the original line segment (see diagram). A line segment ends at the points C(-2,0) and D(4,-4). Determine the equation for the perpendicular bisector of line segment CD.
- A helicopter is travelling from Town A to Town B. A grid is overlaid on the map of this region and Town A is at (-70,770) and Town B is at (220,490) & Town C is the origin.
 - i. Draw a diagram that shows the three towns.
 - ii. Approximately how far did the helicopter travel?
 - iii. What assumption did you make about the route of the helicopter?
- k. Triangles can be classified according to the lengths of their sides (scalene, isosceles, equilateral). A given triangle has vertices at A(4,5), B(1,2) & C(6,1).
 - i. Determine the lengths of all three sides and then classify the triangle type.
 - ii. Construct the triangle on GEOGEBRA.
 - iii. Where would you move point C such that you now had an isosceles triangle?