4.4

Factoring Quadratics: $ax^2 + bx + c$

GOAL

YOU WILL NEED

Factor quadratic expressions of the form $ax^2 + bx + c$, where $a \ne 1$.

algebra tiles

LEARN ABOUT the Math

Kellie was asked to determine the *x*-intercepts of $y = 3x^2 + 11x + 6$ algebraically. She created a graph using graphing technology and estimated that the *x*-intercepts are about x = -0.6 and x = -3.

Kellie knows that if she can write the equation in factored form, she can use the factors to determine the *x*-intercepts. She is unsure about how to proceed because the first term in the expression has a coefficient of 3 and there is no common factor.

? How can you factor $3x^2 + 11x + 6$?

Selecting a strategy to factor a trinomial, where $a \neq 1$

Factor $3x^2 + 11x + 6$, and determine the *x*-intercepts of $y = 3x^2 + 11x + 6$.

Ellen's Solution: Selecting an algebra tile model

1	Х	Х	Х	1	1	1
1	Х	Х	Х	1	1	
1	Х	Х	Х	1	1	
х	x ²	x ²	x ²	х	х	
	Х	Х	Х	1	1	

 $3x^2 + 11x + 6 = (3x + 2)(x + 3)$

I used tiles to create a rectangular area model of the trinomial.

I placed the tiles along the length and width to read off the factors. The length is 3x + 2, and the width is x + 3.

W

NEL Chapter 4 217

The equation in factored form is

$$y = (3x + 2)(x + 3).$$

Let
$$3x + 2 = 0$$
 or $x + 3 = 0$.
 $3x = -2$ $x = -3$
 $x = -\frac{2}{3}$

The x-intercepts occur when y = 0. This happens when either factor is equal to 0.

The *x*-intercepts are $-\frac{2}{3}$ and -3.

Neil's Solution: Selecting an area diagram and a systematic approach

I thought about the general situation, where (px + r) and (qx + s) represent the unknown factors. I created an area model and used it to look for patterns between the coefficients in the factors and the coefficients in the trinomial.

$$(px + r)(qx + s) = pqx^2 + psx + qrx + rs$$
$$= pqx^2 + (ps + qr)x + rs$$

Suppose that

$$3x^2 + 11x + 6 = (px + r)(qx + s).$$

I imagined writing two factors for this product. I had to figure out the coefficients and the constants in the factors.

$$(px + r)(qx + s) = pqx^2 + (ps + qr)x + rs$$

= $3x^2 + 11x + 6$

I matched the coefficients and the constants.

p	q	r	S	ps + qr
3	1	3	2	9
1	3	2	3	9
1	3	3	2	11

I needed values of *p* and *q* that, when multiplied, would give a product of 3. I also needed values of *r* and *s* that would give a product of 6.

$$p = 1$$
, $q = 3$, $r = 3$, and $s = 2$
 $3x^2 + 11x + 6 = (x + 3)(3x + 2)$

The middle coefficient is 11, so I tried different combinations of ps + qr to get 11.

The equation in factored form is

$$y = (x + 3)(3x + 2).$$

Let
$$x + 3 = 0$$
 or $3x + 2 = 0$.
 $x = -3$ $3x = -2$

$$3x = -2$$
$$x = -\frac{2}{3}$$

The x-intercepts occur when y = 0. This happens when either factor is equal to zero.

The *x*-intercepts are -3 and $-\frac{2}{3}$.

Astrid's Solution: Selecting a decomposition strategy

$$3x^2 + 11x + 6$$

$$= (px + r)(qx + s)$$

I imagined writing two factors for this product. I had to figure out the coefficients and the constants in the factors.

$$= pxqx + pxs + rqx + rs$$
$$= pax^{2} + (qr + ps)x + rs$$

I multiplied the binomials. I noticed that I would get the product of all four missing values if I multiplied the coefficient of x^2 (pq) and the constant (rs).

ps and *qr*, the two values that are added to get the coefficient of the middle term, are both factors of *pqrs*.

$$3x^{2} + 11x + 6$$

$$= 3x^{2} + ?x + ?x + 6$$

If I added the product of two of these values (ps) to the product of the other two (qr), I would get the coefficient of x.

 $3 \times 6 = 18$

The factors of 18 are 1, 2, 3, 6, 9, and 18.

$$11 = 9 + 2$$

= (x + 3)(3x + 2)

I needed to decompose the 11 from 11x into two parts. Each part had to be a factor of 18, because $3 \times 6 = 18$.

 $3x^{2} + 9x + 2x + 6$ $= 3x^{2} + 9x + 2x + 6$ = 3x(x + 3) + 2(x + 3)

I divided out the greatest common factors from the first two terms and then from the last two terms.

I factored out the binomial common factor.

decompose

break a number or an expression into the parts that make it up

 \Box

The equation in factored form is y = (x + 3)(3x + 2). Let x + 3 = 0 or 3x + 2 = 0. x = -3 3x = -2 $x = -\frac{2}{3}$ The *x*-intercepts occur when y = 0. This happens when either factor is equal to zero.

The *x*-intercepts are -3 and $-\frac{2}{3}$.

Reflecting

- **A.** Explain how Ellen's algebra tile arrangement shows the factors of the expression.
- **B.** How is Neil's strategy similar to the strategy used to factor trinomials of the form $x^2 + bx + c$? How is it different?
- **C.** How would Astrid's decomposition change if she had been factoring $3x^2 + 22x + 24$ instead?
- **D.** Which factoring strategy do you prefer? Explain why.

APPLY the Math

Selecting a systematic strategy to factor a trinomial, where $a \neq 1$

Factor $4x^2 - 8x - 5$.

Katie's Solution

$$4x^{2} - 8x - 5 = (px + r)(qx + s)$$

$$= pqx^{2} + (ps + qr)x + rs$$

$$pq = 4 \quad \text{and} \quad rs = -5$$

р	q
1	4
4	1
2	2

$$pqx^2 + (ps + qr)x + rs = 4x^2 - 8x - 5$$

 $ps + qr = -8$

I had to choose values that would make ps + qr = -8.

I wrote the quadratic as the

product of two binomials with unknown coefficients and

constants. Then I listed all the possible pairs of values for pq

and rs.

$$(px + r)(qx + s) = (2x + 1)(2x - 5)$$
So, $4x^2 - 8x - 5 = (2x + 1)(2x - 5)$.

The values p = 2, q = 2, r = 1, and s = -5 work because

- pq is (2)(2) = 4
- rs is (1)(-5) = -5
- ps + qr is (2)(-5) + (2)(1) = -8

Selecting a decomposition strategy to factor a trinomial

Factor $12x^2 - 25x + 12$.

Braedon's Solution

$$12x^2 - 25x + 12$$

= $12x^2 - 16x - 9x + 12$

I looked for two numbers whose sum is -25 and whose product is (12)(12) = 144. I knew that both numbers must be negative, since the sum is negative and the product is positive. The numbers are -16 and -9. I used these numbers to decompose the middle term.

$$= 12x^{2} - 16x - 9x + 12$$

$$= 4x(3x - 4) - 3(3x - 4)$$

$$= (3x - 4)(4x - 3)$$

I factored the first two terms and then the last two terms. Then I divided out the common factor of 3x - 4.

Selecting a guess-and-test strategy to factor a trinomial

Factor $7x^2 + 19x - 6$.

Dylan's Solution

$$(7x - 6)(x + 1) = 7x^2 + x - 6$$
 wrong factors

I thought of the product of the factors as the dimensions of a rectangle with the area $7x^2 + 19x - 6$.

The only factors of $7x^2$ are 7x and x. The factors of -6 are -6 and 1, -2 and 3, 6 and -1, and 2 and -3. I had to determine which factors of $7x^2$ and -6 would add to 19x.

I used trial and error to determine the values in place of the question marks. Then I checked by multiplying.

	7 <i>x</i>	-2	
x	7x ²	-2 <i>x</i>	I repeated this process until I found the combination that worked.
3	21x	-6	

$$(7x - 2)(x + 3) = 7x^2 + 19x - 6$$
 worked
 $7x^2 + 19x - 6 = (7x - 2)(x + 3)$

In Summary

Key Idea

• If the quadratic expression $ax^2 + bx + c$ (where $a \ne 1$) can be factored, then the factors have the form (px + r)(qx + s), where pq = a, rs = c, and ps + rq = b.

Need to Know

- If the quadratic expression $ax^2 + bx + c$ (where $a \ne 1$) can be factored, then the factors can be found by
 - forming a rectangle using algebra tiles
 - using the algebraic model $(px + r)(qx + s) = pqx^2 + (ps + qr)x + rs$ systematically
 - using decomposition
 - using guess and test
- A trinomial of the form $ax^2 + bx + c$ (where $a \ne 1$) can be factored if there are two integers whose product is ac and whose sum is b.

CHECK Your Understanding

- **1. a)** Write the trinomial that is represented by the algebra tiles at the left.
 - **b)** Sketch what the tiles would look like if they were arranged in a rectangle.
 - **c)** Use your sketch to determine the factors of the trinomial.
- 2. Each of the following four diagrams represents a trinomial. Identify the trinomial and its factors.

b)

a)	Х	Х	1
	Х	Х	1
	x ²	<i>x</i> ²	х

- x	-x	-x	1
<i>x</i> ²	<i>x</i> ²	<i>x</i> ²	-х
<i>x</i> ²	x ²	x ²	-х

c)

 $15x^{2}$ -5x18x -6

?	8x ²	6x
?	20 <i>x</i>	15

3. Determine the missing factor.

a)
$$2c^2 + 7c - 4 = (c + 4)(\blacksquare)$$

b)
$$4z^2 - 9z - 9 = (\blacksquare)(z - 3)$$

c)
$$6y^2 - y - 1 = (3y + 1)(\blacksquare)$$

d)
$$6p^2 + 7p - 3 = (\blacksquare)(2p + 3)$$

PRACTISING

4. Determine the value of each symbol.

a)
$$5x^2 + •x + 3 = (x + 3)(5x + \blacksquare)$$

b)
$$2x^2 - \blacksquare x - \spadesuit = (2x + 3)(x - 2)$$

c)
$$12x^2 - 7x + \blacksquare = (3x - \spadesuit)(4x - \spadesuit)$$

d)
$$14x^2 - 29x + \spadesuit = (2x - 3)(7x - \blacksquare)$$

5. Factor each expression.

a)
$$2x^2 + x - 6$$

d)
$$4x^2 - 16x + 15$$

e) $2c^2 + 5c - 12$
f) $6x^2 + 5x + 1$

b)
$$3n^2 - 11n - 4$$

e)
$$2c^2 + 5c - 12$$

c)
$$10a^2 + 3a - 1$$

f)
$$6x^2 + 5x + 1$$

6. Factor.

a)
$$6x^2 - 13x + 6$$

d)
$$4x^2 - 20x + 25$$

b)
$$10m^2 + m - 3$$

b)
$$10m^2 + m - 3$$
 e) $5d^2 + 8 - 14d$

c)
$$2a^2 - 11a + 12$$

f)
$$6n^2 - 20 + 26n$$

7. Factor.

NEL

a)
$$15x^2 + 4x - 4$$

d)
$$35x^2 - 27x - 18$$

b)
$$18m^2 - 3m - 10$$

a)
$$15x^2 + 4x - 4$$
 d) $35x^2 - 27x - 18$ **b)** $18m^2 - 3m - 10$ **e)** $63n^2 + 126n + 48$

c)
$$16a^2 - 50a + 36$$

f)
$$24d^2 + 35 - 62d$$

8. Write three different quadratic trinomials of the form $ax^2 + bx + c$, where $a \neq 1$, that have (3x - 4) as a factor.

9. The area of a rectangle is given by each of the following trinomials.

Letermine expressions for the length and width of the rectangle.

a)
$$A = 6x^2 + 17x - 3$$
 b) $A = 8x^2 - 26x + 15$

b)
$$A = 8x^2 - 26x + 15$$

- **10.** Identify possible integers, k, that allow each quadratic trinomial
- to be factored.

a)
$$kx^2 + 5x + 2$$
 b) $9x^2 + kx - 5$ **c)** $12x^2 - 20x + k$

b)
$$9x^2 + kx - 5$$

c)
$$12x^2 - 20x + k$$

11. Factor each expression.

a)
$$6x^2 + 34x - 12$$
 d) $5b^3 - 17b^2 + 6b$

d)
$$5b^3 - 17b^2 + 6b$$

b)
$$18v^2 + 33v - 30$$

b)
$$18v^2 + 33v - 30$$
 e) $-6x - 51xy + 27xy^2$ **c)** $48c^2 - 160c + 100$ **f)** $-7a^2 - 29a + 30$

c)
$$48c^2 - 160c + 100$$

f)
$$-7a^2 - 29a + 30$$

12. Determine whether each polynomial has (k + 5) as one of its factors.

a)
$$k^2 + 9k - 52$$

d)
$$10 + 19k - 15k^2$$

a)
$$k^2 + 9k - 52$$
 d) $10 + 19k - 15k^2$ **b)** $4k^3 + 32k^2 + 60k$ **e)** $7k^2 + 29k - 30$

e)
$$7k^2 + 29k - 30$$

c)
$$6k^2 + 23k + 7$$

f)
$$10k^2 + 65k + 75$$

13. Examine each quadratic relation below.

- i) Express the relation in factored form.
- ii) Determine the zeros.
- iii) Determine the coordinates of the vertex.
- iv) Sketch the graph of the relation.

a)
$$y = 2x^2 - 9x + 4$$

a)
$$y = 2x^2 - 9x + 4$$
 b) $y = -2x^2 + 7x + 15$

- a) What are the break-even points for the company?
- **b)** What is the maximum profit that the company can earn?
- c) How many games must the company produce to earn the maximum profit?

15. Factor each expression.

a)
$$8x^2 - 13xy + 5y^2$$

d)
$$16c^4 + 64c^2 + 39$$

b)
$$5a^2 - 17ab + 6b^2$$

e)
$$14v^6 - 39v^3 + 27$$

c)
$$-12s^2 - sr + 35r^2$$

a)
$$8x^2 - 13xy + 5y^2$$
 d) $16c^4 + 64c^2 + 39$ **b)** $5a^2 - 17ab + 6b^2$ **e)** $14v^6 - 39v^3 + 27$ **c)** $-12s^2 - sr + 35r^2$ **f)** $c^3d^3 + 2c^2d^2 - 8cd$

16. Create a flow chart that would help you decide which strategy

c you should use to factor a given polynomial.

Extending

17. Factor.

a)
$$6(a+b)^2 + 11(a+b) + 3$$

b)
$$5(x-y)^2-7(x-y)-6$$

c)
$$8(x+1)^2 - 14(x+1) + 3$$

d)
$$12(a-2)^4 + 52(a-2)^2 - 40$$

18. Can a quadratic expression of the form $ax^2 + bx + c$ always be factored if $b^2 - 4ac$ is a **perfect square**? Explain.

