Zero and Negative Exponents Algebra 1

In our last lesson we learned how to simplify products and quotients of monomials using laws of exponents with positive integers. But, zero and negative exponents are also possible.

Exercise #1: Recall that $\frac{x^a}{x^b} = x^{a-b}$.

(a) Using this exponent law, simplify each of the following.

$$\frac{x^4}{x^4} =$$

$$\frac{x^{10}}{x^{10}} =$$

$$\frac{y^7}{v^7} =$$

(b) What must each of these quantities equal, assuming none of the variables equals zero?

Exercise #2: Simplify each of the following:

(a)
$$125^0 =$$

(b)
$$(2y)^0 =$$
 (c) $5x^0 =$

(c)
$$5x^0 =$$

(d)
$$(2x^0)^3 =$$

We can investigate negative exponents in a very similar fashion to the zero exponent. The key is to define a negative exponent in such a way that our fundamental rules for exponents don't need to change.

Exercise #3: Consider the quotient $\frac{x^2}{...5}$.

- (a) Write this quotient using the exponent law from *Exercise* #1.
- (b) Write this quotient in its simplest form without a negative exponent.

Exercise #4: Rewrite each expression in simplest terms without the use of negative exponents.

(a)
$$4^{-2} =$$

(b)
$$x^{-2} =$$

(c)
$$2^{-3} =$$

(d)
$$v^{-10} =$$

Exercise #5: Rewrite each of the following monomials without the use of negative exponents.

(a)
$$\frac{1}{x^{-2}}$$
 =

(b)
$$\frac{1}{v^{-5}}$$
 =

(c)
$$\frac{1}{x^{-3}}$$

(d)
$$\frac{y^{-5}}{x^{-7}} =$$

NEGATIVE AND ZERO EXPONENTS

If a is any integer and $x \neq 0$ then $(1) \quad x^{-a} = \frac{1}{x^a} \qquad (2) \quad \frac{1}{x^{-a}} = x^a$

(1)
$$x^{-a} = \frac{1}{x^a}$$

(2)
$$\frac{1}{x^{-a}} = x^a$$

(3)
$$x^0 = 1$$

Exercise #6: Which of the following is equivalent to $\frac{x^{-2}y^5}{x^{-5}y^{-3}}$?

(1)
$$\frac{x^3}{y^8}$$

(3)
$$x^3y^8$$

(2)
$$\frac{y^8}{x^3}$$

$$(4) \ \frac{1}{x^3 y^8}$$

Exercise #7: Rewrite the following expressions without negative or zero exponents.

(a)
$$4^{-2} =$$

(b)
$$4^0 =$$

(c)
$$-4^{-2} =$$

(d)
$$1^{-2} =$$

(e)
$$-1^{-2} =$$

(a)
$$4^{-2} =$$
 (b) $4^{0} =$ (c) $-4^{-2} =$ (d) $1^{-2} =$ (e) $-1^{-2} =$ (f) $(-1)^{0} =$

(g)
$$3x^0 =$$

(h)
$$2x^{-3} =$$

(i)
$$\frac{6}{r^{-5}}$$
 =

(j)
$$2x^{-7} =$$

(k)
$$\frac{a^{-3}}{d^{-2}} =$$

(g)
$$3x^0 =$$
 (h) $2x^{-3} =$ (i) $\frac{6}{x^{-5}} =$ (j) $2x^{-7} =$ (k) $\frac{a^{-3}}{d^{-2}} =$ (l) $\frac{r^3t^{-2}}{s^{-4}} =$

Exercise #8: Evaluate each of the following expressions using the values a = -1, b = 2 and c = 3. Use the STORE feature on your calculator to aid you.

$$(a) \left(ab^{-2}\right)^{-c} =$$

(b)
$$(abc)^{-1} =$$

(c)
$$\left(\frac{a^{-2}}{b^2c^{15}}\right)^0 =$$

(d)
$$a^{-b}b^{-c}c^{-a} =$$

Zero and Negative Exponents Algebra 1 Homework

Skills

For problems 1 through 36, rewrite without zero or negative exponents.

1.
$$4^{-3} =$$

$$2. -5^{-2} =$$

3.
$$5^0 =$$

4.
$$10^{-2}$$
 =

5.
$$-4^{-3} =$$

6.
$$2^{-4}$$
 =

7.
$$\frac{1}{2^{-2}}$$
 =

8.
$$\frac{1}{4^0}$$
 =

9.
$$(-3)^{-2}$$
 =

10.
$$3x^0 =$$

11.
$$5x^{-4} =$$

12.
$$\frac{x^5}{y^{-3}} =$$

13.
$$\frac{a^{-4}}{b^{-3}} =$$

14.
$$-2x^0y^{-2} =$$

15.
$$2^{-3} =$$

16.
$$(16x^2y^{-5})^0 =$$

17.
$$-3^0 =$$

18.
$$8x^0y^{-3} =$$

19.
$$(-3)^{-3} =$$

20.
$$\left(\frac{1}{2}\right)^{-1} =$$

21.
$$\left(\frac{1}{2}\right)^{-2} =$$

22.
$$\left(\frac{1}{3}\right)^{-1} =$$

23.
$$1^{-6} =$$

24.
$$(-5)^0 =$$

25.
$$(-1)^{-2}$$
 =

$$26. -2^{-1} =$$

27.
$$(-2)^{-1} =$$

28.
$$(-2)^{-2} =$$

29.
$$\left(-2^{-2}\right)^{-1} =$$

$$30. \ \frac{2x^{-3}y^2}{4x^{-4}y^{-1}} =$$

31.
$$a^3b^{-4} =$$

32.
$$\frac{a^{-2}}{b^4}$$
 =

33.
$$\frac{x^2}{2y^{-3}} =$$

$$34. \ \frac{-3x^3}{y^{-4}} =$$

$$35. \ \frac{x^0 y^{-3}}{z^2} =$$

$$36. \ 2x^{-1}y^{-4} =$$

Use the STORE feature on your calculator to help evaluate the following.

37.
$$y^{-3}$$
 for $y = 2$

38.
$$y^{-3}$$
 for $y = \frac{1}{2}$

39.
$$2x^{-4}y^{-1}$$
 for $x = 2$, $y = \frac{1}{3}$

40.
$$(x+3)^{-2}$$
 for $x = -4$

41.
$$x^{-y}$$
 for $x = -2$, $y = 2$

42.
$$(x^4y^2)^0$$
 for $x = \frac{4}{3}$, $y = -\frac{2}{7}$

43.
$$x^y x^{-y}$$
 for $x = \frac{2}{5}$, $y = -\frac{4}{3}$

Reasoning

Fill in the missing \square for each of the following.

44.
$$\frac{1}{9} = 3^{\square}$$

45.
$$4^{-2} = \frac{1}{\Box}$$

46.
$$\frac{1}{25} = \Box^{-2}$$

47.
$$\frac{\Box}{2} = 2^{-1}$$

48.
$$6^{-2} = \frac{1}{\Box}$$

49.
$$10^{\square} = \frac{1}{10,000}$$

50.
$$\frac{1}{81} = 3^{\square}$$

51.
$$\frac{1}{64} = 4^{\square}$$

Write the answer to each of the following as a single number.

52.
$$[-1+(5+2)^0]^3 =$$

53.
$$\left[\frac{1}{2} + (3-1)^{-1}\right]^2 =$$

$$54. \left[3^{-1} + \frac{8}{3}\right]^{-3} =$$

55. Evaluate each of the following products:

(a)
$$2^3 \cdot 2^{-3} =$$

(b)
$$5^2 \cdot 5^{-2} =$$

(c)
$$10^{-4} \cdot 10^4 =$$

(d)
$$x^a \cdot x^{-a} =$$

56. Which of the following is correct?

(a)
$$2x^{-3} = \frac{1}{2x^3}$$

(b)
$$2x^{-3} = \frac{2}{x^3}$$

Explain why the other choice is incorrect.

$$62. \left(a^{-2}\right)^{-3} = \frac{1}{a^6}$$

61. $3^7 \cdot 3^{-4} = 27$

63.
$$(-4)^0 = 0$$

$$64. \ \ 2^{-3} \cdot 2^3 \cdot 2^0 = 2$$

65.
$$\frac{x^2y^{-1}}{x^{-3}y^2} = \frac{x^5}{y^3}$$

Find the value of x that makes each statement true.

66.
$$2^x \cdot 2^4 = 2^{12}$$

67.
$$5^{-2} \cdot 5^x = 5^9$$

68.
$$\left(4^{x}\right)^{2} = 4^{10}$$

True or False

57.
$$\left(\frac{1}{2}\right)^{-1} = 2$$

$$58. \left(\frac{4}{3}\right)^{-1} = -\frac{4}{3}$$

$$59. \ \left(-2\right)^{-2} = \frac{1}{4}$$

60.
$$\frac{-2x^{-3}y^2}{a^3x^2} = \frac{-2y^2}{a^3x^5}$$

69.
$$3^{x-2} = 27$$

70.
$$\left(4^2 \cdot 3^{-2} \cdot 5^4\right)^x = 1$$

71.
$$2^{2x+6} = \frac{1}{4}$$