7.5 Solving Right Triangles

GOAL

Use primary trigonometric ratios to calculate side lengths and angle measures in right triangles.

LEARN ABOUT the Math

A farmers' co-operative wants to buy and install a grain auger. The auger would be used to lift grain from the ground to the top of a silo. The greatest angle of elevation that is possible for the auger is 35°. The auger is 18 m long.

• What is the maximum height that the auger can reach?

EXAMPLE 1

Solving a problem for a side length using a trigonometric ratio

Calculate the maximum height that the auger can reach.

Hong's Solution

Tech Support

For help using a TI-83/84 graphing calculator to calculate trigonometric ratios, see Appendix B-12. If you are using a TI-*n*spire, see Appendix B-48.

can reach is about 10 m.

Reflecting

- **A.** If the height of the grain auger is increased, what happens to the sine, cosine, and tangent ratios for the angle of elevation? Explain.
- **B.** Why can you use either the sine ratio or the cosine ratio to calculate the maximum height?
- C. Explain why Hong might have chosen to use the sine ratio.

APPLY the Math

EXAMPLE 3 Connecting the cosine ratio with an angle measure

Noah is flying a kite and has released 25 m of string. His sister is standing 8 m away, directly below the kite. What is the angle of elevation of the string?

Jacob's Solution

EXAMPLE 4	Selecting a trigonometric strategy to solve
	a triangle

Solve $\triangle ABC$, given $\angle A = 90^\circ$, a = 7.8 m, and c = 5.2 m.

Chloe's Solution

Communication *Tip*

To solve a triangle means to determine all unknown angle measures and side lengths.

and $b \doteq 5.8$ m.

In Summary

Key Idea

• Trigonometric ratios can be used to calculate unknown side lengths and unknown angle measures in a right triangle. The ratio you use depends on the information given and the quantity you need to calculate.

Need to Know

- To determine the length of a side in a right triangle using trigonometry, you need to know the length of another side and the measure of one of the acute angles.
- To determine the measure of one of the acute angles in a right triangle using trigonometry, you need to know the lengths of two sides.

CHECK Your Understanding

- 1. Solve for *x*, to one decimal place, using the indicated trigonometric ratio.
 - a) cosine

В

С

- **8.** Calculate the measure of the indicated angle, to the nearest degree, in each triangle.
 - a) In $\triangle ABC$, $\angle C = 90^{\circ}$, a = 11.3 cm, and b = 9.2 cm. Calculate $\angle A$.
 - **b)** In $\triangle DEF$, $\angle D = 90^\circ$, d = 8.7 cm, and f = 5.4 cm. Calculate $\angle F$.
- **9.** Janice is getting ready to climb a steep cliff. She needs to fasten herself to a rope that is anchored at the top of the cliff. To estimate how much rope she needs, she stands 50 m from the base of the cliff and estimates that the angle of elevation to the top is 70°. How high is the cliff?
- **10.** Solve for *i* and *j*.

- 11. A ladder leans against a wall, as shown. How long is the ladder,
- A to the nearest tenth of a metre?

12. Kelsey made these notes about $\triangle ABC$. Determine whether **c** each answer is correct, and explain any errors.

7.5

13. Solve each triangle. Round the measure of each angle to the nearest degree. Round the length of each side to the nearest unit.

- **14.** For a ladder to be stable, the angle that it makes with the ground should be no more than 78° and no less than 73°.
 - a) If the base of a ladder that is 8.0 m long is placed 1.5 m from a wall, will the ladder be stable? Explain.
 - **b**) What are the minimum and maximum safe distances from the base of the ladder to the wall?
- **15. a**) Create a mind map that shows the process of choosing the correct trigonometric ratio to determine an unknown measure in a right triangle.
 - **b)** Does the process differ depending on whether you are solving for a side length or an angle measure? Explain.

Extending

16. Determine the diameter of the circle, if *O* is the centre of the circle.

- **17.** a) Determine the exact value of *x* in the triangle at the right using trigonometry.
 - **b)** Determine the exact value of *y* using the Pythagorean theorem.
 - c) Determine the sine, cosine, and tangent ratios of both acute angles. What do you notice?

- **18.** a) Draw a right isosceles triangle.
 - **b)** Calculate the sine and cosine ratios for one of the acute angles. Explain your results.