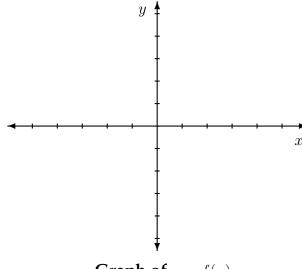
IB Mathematics HL—Year 1 Unit 6: Worksheet—IB Style Questions (Core Topic 7)

NI	Data	D 1
Name:	Date:	Period:

- 1. The function f is given with f''(x) = 2x 2. When the graph of f is drawn, it has a minimum point at (3, -7).
 - (a) Show that $f'(x) = x^2 2x 3$, and then find f(x) explicitly.

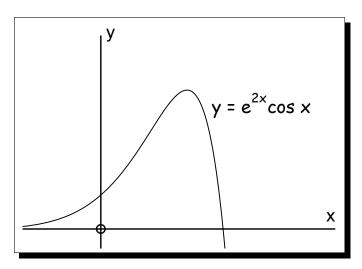
(b) find f(0), f(-1), and f'(-1).

(c) Sketch the graph of f, labelling it with the information obtained in part (b).



Graph of y = f(x)

2. The diagram to the right shows part of the graph of the curve with equation $y = e^{2x} \cos x$.



(a) Show that $\frac{dy}{dx} = e^{2x}(2\cos x - \sin x)$.

(b) Find $\frac{d^2y}{dx^2}$

There is an inflection point at P(a, b).

(c) Use the results from parts (a) and (b) to prove that

(i)
$$\tan a = \frac{3}{4}$$
.

(ii) the gradient of the curve at P is e^{2a} .

- 3. The function f is given by $f(x) = \frac{\ln 2x}{x}, \ x > 0.$
 - (a) (i) Show that $f'(x) = \frac{1 \ln 2x}{x^2}$.

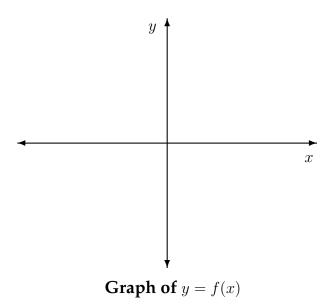
Hence,

(ii) prove that the graph of f can have only one local maximum or minimum point;

(iii) find the coordinates of the maximum point on the graph of f.

(b) Find the coordinates of the point of inflection on the graph of f.

- 4. Let *f* be the function defined by setting $f(x) = \frac{2}{1+x^3}$.
 - (a) (i) Write down the equation of the vertical asymptote of the graph of f.
 - (ii) Write down the equation of the horizontal asymptote of the graph of f.
 - (iii) Sketch the graph of f in the domain $-3 \le x \le 3$, indicating the asymptotes.



(b) Find the coordinates of the point(s) of inflection of the graph of *f* and indicate them on the graph above.

- 5. The function g is defined by setting $g(x) = \frac{x^2}{2^x}$, x > 0.
 - (a) Show that $g'(x) = \frac{2x x^2 \ln 2}{2^x}$.

(b) Find the **exact** solution of g'(x) = 0.

(c) Show that the value of x obtained in (b) gives a maximum value for g.

6. The function g is defined for $-3 \le x \le 3$. The behavior of g' and g'' is given in the tables below.

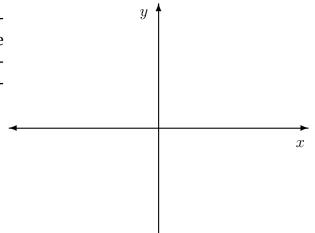
x	-3 < x < -2	-2	-2 < x < 1	1	1 < x < 3
g'(x)	negative	0	positive	0	negative

а	c	$-3 < x < -\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2} < x < 3$
g''((x)	positive	0	negative

Use the information above to answer the following. In each case, justify your answer.

- (a) Write down the value of x for which g has a maximum.
- (b) On which intervals is g increasing?

- (c) Write down the value of x for which the graph of g has a point of inflection.
- (d) Given that g(-3) = 1, g(-2) = -2, g(-1/2) = -1, and g(1) = 0, sketch a graph of g consistent with the above information. On your sketch, indicate the maximum point, the minimum point, and the point of inflection.



7. A point $P(x, x^2)$ lies on the curve $y = x^2$. Calculate the minimum distance from the point $A\left(2, -\frac{1}{2}\right)$ to the point P.

- 8. A rectangle is drawn so that its lower vertices are at the points $(\pm x, 0)$ and its upper vertices are on the curve $y = e^{-x^2}$. The area of this rectangle is denote by A.
 - (a) Write down an expression of A in terms of x.

(b) Find the maximum value of A.

