LESSON 79 – EXPONENTIAL FORMS OF COMPLEX NUMBERS

L2 Math - Santows

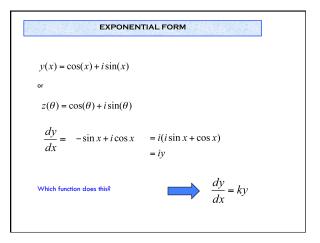
Opening Exercise #1

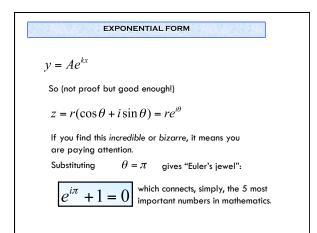
- List the first 8 terms of the Taylor series for (i) e^x, (ii) sin(x) and (iii) cos(x)
- \square HENCE, write the first 8 terms for the Taylor series for e $^{\theta}$
- HENCE, write the first 8 terms for the Taylor series for e^{iθ}. Simply your expression.
- What do you notice?

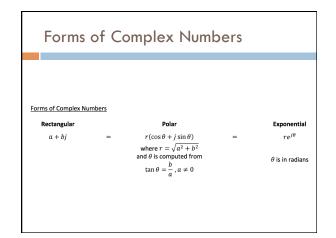
Opening Exercise #2

- \Box If y(θ) = cos(θ) + *i* sin(θ), determine dy/d θ
- □ Simplify your expression and what do you notice?

Ð





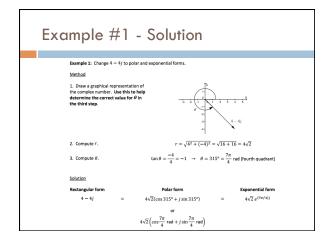


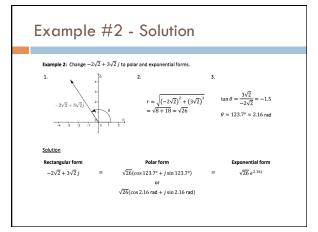
Conversion Examples

Convert the following complex numbers to all 3 forms:

(a)
$$4-4i$$

(b) $-2\sqrt{2}+3\sqrt{2}i$





Further Practice

Problems to Try

Change to polar and exponential forms:

1. -3 - 2j

2. $2\sqrt{3} - 2j$

Change to rectangular form:

- 3. $15(\cos 120^\circ + j \sin 120^\circ)$
- 4. $12\left(\cos\frac{\pi}{3} + j\sin\frac{\pi}{3}\right)$ 5. $6e^{(4\pi/3)j}$

Further Practice - Answers

Answers

- 1. $\sqrt{13}(\cos 213.7^\circ + j \sin 213.7^\circ)$ or $\sqrt{13}(\cos 3.73 \text{ rad} + j \sin 3.73 \text{ rad}); \sqrt{13} e^{3.73j}$ 2. $4(\cos 330^\circ + j \sin 330^\circ)$ or $4\left(\cos \frac{11\pi}{6} + j \sin \frac{11\pi}{6}\right);$ $4e^{(11\pi/6)j}$
- 3. $-\frac{15}{2} + \frac{15\sqrt{3}}{2}j \approx -7.5 + 13.0j$ 4. $6 + 6\sqrt{3}j \approx 6 + 10.4j$ 5. $-3 3\sqrt{3}j \approx -3 5.20j$

Example 5

Example 5

Find complex number expressions, in Cartesian form, for (a) $e^{i\pi/4}$ (b) e^{-i} (c) $e^{i\pi}$

Example 5 - Solutions

Solution

(a) $e^{i\pi/4} = \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}$ (b) $e^{-i} = \cos(-1) + i \sin(-1) = 0.540 - i(0.841)$ (c) $e^{i\pi} = \cos \pi + i \sin \pi = -1 + i(0) = -1$

Verifying Rules

- If $Z_1 = r_1 e^{i\theta_1}$ and $Z_2 = r_2 e^{i\theta_2}$
- □ Use the exponential form of complex numbers to determine: (a) $z_1 \times z_2$

(b)
$$\frac{z_1}{z_2}$$

(c) $\frac{1}{z_1}$

Example 6

Example 6

If $z = r e^{i\theta}$ and $w = t e^{i\phi}$ then find expressions for (a) z^{-1} (b) z^* (c) zw

Example 6 - Solutions

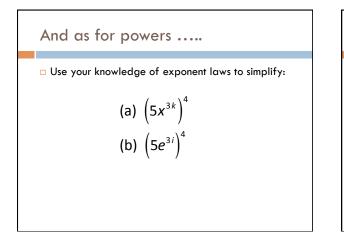
Solution

(a) If $z = r e^{i\theta}$ then $z^{-1} = \frac{1}{r e^{i\theta}} = \frac{1}{r} e^{-i\theta}$ using the normal rules for indices.

(b) Working in polar form: if $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$ then

 $z^* = r(\cos \theta - \mathrm{i} \sin \theta) = r(\cos(-\theta) + \mathrm{i} \sin(-\theta)) = r \mathrm{e}^{-\mathrm{i} \theta}$

since $\cos(-\theta) = \cos\theta$ and $\sin(-\theta) = -\sin\theta$. In fact this reflects the general rule: to find the complex conjugate of any expression simply replace i by -i wherever it occurs in the expression. (c) $zw = (re^{i\theta})(te^{i\phi}) = rte^{i\theta}e^{i\phi} = rte^{i\theta+i\phi} = rte^{i(\theta+i\phi)}$ which is again the result we are familiar with: when complex numbers are multiplied their moduli multiply and their arguments add. And as for powers Use your knowledge of exponent laws to simplify: (a) $(5x^{3k})^4$



So .. Thus $z^{n} = (rcis\theta)^{n} = r^{n}cis(n\theta)$ $z^{n} = (re^{i\theta})^{n} = r^{n}e^{in\theta}$

Use the exponential form to:

Example 2. Express:

a) $(1+i)^6$ in Cartesian form;

b)
$$\frac{1+i\sqrt{3}}{\sqrt{3}+i}$$
 in polar form.

de Moivres Theorem

Solution.

- a) Change to polar form, use (8), then change back to Cartesian form: $(1+i)^6=(\sqrt{2}e^{i\pi/4})^6=(\sqrt{2})^6e^{i6\pi/4}=8e^{i3\pi/2}=-8i.$
- b) Changing to polar form, $\frac{1+i\sqrt{3}}{\sqrt{3}+i} = \frac{2e^{i\pi/3}}{2e^{i\pi/6}} = e^{i\pi/6}$, using the division rule (7).

Famous Equations

 \Box Show that $e^{i\pi} + 1 = 0$

• Show that $(3+4i)^{(6+7i)} = -10.3 - 21.4i$