

Polar Form of a Complex Number

- The expression $r(\cos\theta + i\sin\theta)$
- is called the **polar form** (or **trigonometric form**) of the complex number x + yi. The expression $\cos \theta + i \sin \theta$ is sometimes abbreviated cis θ .
- Using this notation $r(\cos\theta + i\sin\theta)$ is written $r \operatorname{cis} \theta$.

11/16/15

Example

• Express $2(\cos 120^\circ + i \sin 120^\circ)$ in rectangular form.

• Find the product of $4(\cos 50^\circ + i\sin 50^\circ)$ and $2(\cos 10^\circ + i\sin 10^\circ)$.

Example: Quotient

• Find the quotient. $16(\cos 70^\circ + i \sin 70^\circ)$ and $4(\cos 40^\circ + i \sin 40^\circ)$

If $z = 4(\cos 40^{\circ} + i \sin 40^{\circ})$ and $w = 6(\cos 120^{\circ} + i \sin 120^{\circ})$, find: (a) zw (b) z/w

$\frac{z}{4} \left[\cos 40^{\circ} + i \sin 40^{\circ} \right]$ = $\frac{4}{6} \left[\cos (40^{\circ} - 120^{\circ}) + i \sin (40^{\circ} - 120^{\circ}) \right]$	
divide the moduli $= \frac{2}{3} \left[\cos(-80^\circ) + i\sin(-80^\circ) \right]$ $= \frac{2}{3} \left[\cos(280^\circ) + i\sin(280^\circ) \right]$	the arguments In polar form we want an angle between 0 and 360° so add 360° to the -80°
In rectangular $=\frac{2}{3}(0.1736 - 0.98)$	848 <i>i</i>)= 0.12 – 0.66 <i>i</i>

Example Rectangular form	divide $\frac{z_1}{z_2}$ Where $z_1 = 3\sqrt{2} + 3\sqrt{2}i = 6(\cos 45 + i \sin 45)$ $z_2 = 2\sqrt{3} + 2i = 4(\cos 30 + i \sin 30)$ Trig form

(5)

$$z = r(\cos\theta + i\sin\theta), z^{2} = r^{2}(\cos 2\theta + i\sin 2\theta)$$

$$z^{3} = z \cdot z^{2} =$$

De Moivre's Theorem

- If $r_1 = (\cos \theta_1 + i \sin \theta_1)$ is a complex number, and if *n* is any real number, then
- $\left[r\left(\cos\theta_{1}+i\sin\theta_{1}\right)\right]^{n}=r^{n}\left(\cos n\theta+i\sin n\theta\right).$
- In compact form, this is written $[r \operatorname{cis} \theta]^n = r^n (\operatorname{cis} n\theta)$.

I	
	Example: Find $(-1 - i)^5$ and express the result in rectangular form.
	11/6/15
I	

Example: Find
$$(-1 - i)^5$$
 and express the result in rectangular form.
• First, find trigonometric notation for $-1 - i$
 $-1 - i = \sqrt{2} \left(\cos 225 + i \sin 225 \right)$
• Theorem $(-1 - i)^5 = \left[\sqrt{2} \left(\cos 225^\circ + i \sin 225^\circ \right) \right]^5$
 $= \left(\sqrt{2} \right)^5 \left[\cos(5 \cdot 225^\circ) + i \sin(5 \cdot 225^\circ) \right]$
 $= 4\sqrt{2} \left(\cos 1125^\circ + i \sin 1125^\circ \right)$
 $= 4\sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right)$
 $= 4 + 4i$

Example
• Let
$$z = 1 - i$$
 Find z^{10}

Find the complex fifth roots of
$$-2\sqrt{3} + 2i$$

 $-2\sqrt{3} + 2i = 4(-\frac{\sqrt{3}}{2} + \frac{1}{2}i) = 4(\cos 150^\circ + i\sin 150^\circ)$
The five complex roots are:
 $z_k = \sqrt[5]{4} \left[\cos(\frac{150^\circ}{5} + \frac{360^\circ k}{5}) + i\sin(\frac{150^\circ}{5} + \frac{360^\circ k}{5}) \right]$
 $z_k = \sqrt[5]{4} \left[\cos(30^\circ + 72^\circ k) + i\sin(30^\circ + 72^\circ k) \right]$
for $k = 0, 1, 2, 3, 4$.

$$\begin{aligned} z_{k} &= \sqrt[5]{4} \Big[\cos(30^{\circ} + 72^{\circ} k) + i\sin(30^{\circ} + 72^{\circ} k) \Big] \\ k &= 0, \quad z_{0} &= \sqrt[5]{4} \Big[\cos(30^{\circ}) + i\sin(30^{\circ}) \Big] \\ k &= 1, \quad z_{1} &= \sqrt[5]{4} \Big[\cos(102^{\circ}) + i\sin(102^{\circ}) \Big] \\ k &= 2, \quad z_{2} &= \sqrt[5]{4} \Big[\cos(174^{\circ}) + i\sin(174^{\circ}) \Big] \\ k &= 3, \quad z_{3} &= \sqrt[5]{4} \Big[\cos(246^{\circ}) + i\sin(246^{\circ}) \Big] \\ k &= 4, \quad z_{4} &= \sqrt[5]{4} \Big[\cos(318^{\circ}) + i\sin(318^{\circ}) \Big] \\ \end{bmatrix} \end{aligned}$$

$$32 + 0i$$

$$r = \sqrt{a^{2} + b^{2}} = \sqrt{32^{2} + 0^{2}} = \sqrt{32^{2}} = 32$$

$$\theta = tan^{-1}\frac{0}{32} \qquad \theta = tan^{-1}0 = 0^{\circ}$$

$$32\left[cos(0^{\circ}) + isin(0^{\circ})\right]$$

$$\sqrt[5]{32}\left[cos\left(\frac{0}{5} + \frac{360k}{5}\right) + isin\left(\frac{0}{5} + \frac{360k}{5}\right)\right]$$

$$2\left[cos(72k) + isin(72k)\right]$$

101615

$$2[\cos(72k) + i\sin(72k)]$$

$$k = 0 \quad 2[\cos(0^{\circ}) + i\sin(0^{\circ})] = 2(1+0i) = 2$$

$$k = 1 \quad 2[\cos(72) + i\sin(72)] = .62 + 1.90i$$

$$k = 2 \quad 2[\cos(144) + i\sin(144)] = -1.62 + 1.18i$$

$$k = 3 \quad 2[\cos(216) + i\sin(216)] = -1.62 - 1.18i$$

$$k = 4 \quad 2[\cos(288) + i\sin(288)] = .62 - 1.90i$$

Example Find $\sqrt[3]{i}$ You may assume it is the principle root you are seeking unless specifically stated otherwise. First express i as a complex number in standard form. 0 + iThen change to polar form $r = \sqrt{a^2 + b^2}$ r = 1 $tan \theta = \frac{b}{a}$ $tan \theta = \frac{1}{0}$ $\theta = tan^{-1}\frac{1}{0}$ $\theta = 90^{\circ}$ $1[cos(90^{\circ})+isin(90^{\circ})]$

$$1\left[\cos\left(90^{\circ}\right)+i\sin\left(90^{\circ}\right)\right]$$

Since we are looking for the cube root, use DeMoivre's Theorem
$$\frac{1}{3} \text{ and raise it to the power}$$
$$1^{\frac{1}{3}}\left[\cos\left(\frac{1}{3}90^{\circ}\right)+i\sin\left(\frac{1}{3}90^{\circ}\right)\right]$$
$$1\left[\cos\left(30^{\circ}\right)+i\sin(30^{\circ})\right]$$
$$1\left[\cos\left(30^{\circ}\right)+i\sin(30^{\circ})\right]$$
$$1\left[\frac{\sqrt{3}}{2}+i\frac{1}{2}\right] = \frac{\sqrt{3}}{2}+\frac{1}{2}i$$

