

OPENING EXERCISE #1 • Expand the following series (6 – 8 terms) and comment upon the similarities and differences you notice: (a) $\sum_{n=1}^{\infty} \frac{1}{n}$ (b) $\sum_{n=1}^{\infty} \frac{x^n}{n}$ (c) $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ (d) $\sum_{n=1}^{\infty} \frac{(2x)^n}{n!}$ (e) $\sum_{n=1}^{\infty} n$ (f) $\sum_{n=1}^{\infty} mx^n$ (g) $\sum_{n=1}^{\infty} \frac{10^n}{(n+1)!}$ (h) $\sum_{n=1}^{\infty} \frac{10^nx^n}{(n+1)!}$

OPENING EXERCISE #2	
 For the following series, write the first 5 terms and then test the convergences of the following series: 	
(a) $\sum_{k=1}^{\infty} \frac{2^k}{k!}$ (b) $\sum_{k=1}^{\infty} \frac{(-1)^k}{k!}$ (c) $\sum_{k=1}^{\infty} \frac{(-4)^k}{k!}$ (d) $\sum_{k=1}^{\infty} \frac{(0.5)^k}{k!}$ (e) $\sum_{k=1}^{\infty} \frac{214^k}{k!}$	
- Make a general conclusion about the convergence of $\sum_{k=1}^{\infty} \frac{x^k}{k!}$ and prove that it is true:	
- The series $\sum_{k=1}^{\infty} \frac{x^k}{k!}$ is an example of a POWER SERIES	۲

OBJECTIVES

• In the next few lessons, we will introduce a few concepts:

- conditions for convergence of a power series
 radius of convergence of a power series
 representation of functions with a power series

After working through these lessons and completing a sufficient number of
exercises on paper, you should be able to

determine the radius of convergence of that series
expand a function in a power series

In general. . .

 $\sum_{n=1}^{\infty} a_n (x-x_0)^n.$

In this case, we say that the power series is based at x_0 or that it is centered at x_0 .

What can we say about convergence of power series?

A great deal, actually.

Checking for Convergence

ecking on the convergence of $1 + 2x + 3x^2 + 4x^3 + 5x^4 + ... = \sum_{k=1}^{m} (k+1)x^k$

Checking for Convergence

Checking on the convergence of $1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots = \sum_{i=0}^{\infty} (k+i)x^4$ We start by setting up the appropriate limit. $\lim_{i \to \infty} \frac{(k+2)|x|^{k+1}}{(k+1)|x|^k} = \lim_{k \to \infty} \frac{(k+2)|x|}{(k+1)} = |x|$ The ratio test says that the series converges provide that this limit is less than 1. That is, when |x| < 1.

E	Example #1 - Power Series
o $\sum_{n=0}^{\infty} \frac{(-1)^n n(x+3)^n}{4^n}$	$\lim_{n \to \infty} \left \frac{(-1)(n+1)(x+3)}{4n} \right = \frac{1}{4} x+3 $
Ratio Test: Convergence	for $L < 1$
$\frac{1}{4} x+3 < 1$ $ x+3 < 4$ Radius of Convergence $R = 4$	Interval of Convergence: -4 < x + 3 < 4 -7 < x < 1 End points need to be tested.
	۲

Exam	ple #1 - Power Series	
	$\sum_{n=0}^{\infty}n$	
$\sum_{n=0}^{\infty} \frac{(-1)^n n (-7+3)^n}{4^n}$	n^{th} term test for divergen $\lim_{n o \infty} n = \infty \neq 0$	
$\sum_{n=0}^{\infty} \frac{(-1)^n n (-4)^n}{4^n}$	divergent at $x = -7$ -7 cannot be included in the interval of convergence	
$\sum_{n=0}^{\infty} \frac{(-1)^n n (-1)^n (4)^n}{4^n}$		

Example #2 - Power Series				
$ \sum_{n=1}^{\infty} \frac{2^n (4x-8)^n}{n} \qquad \lim_{n\to\infty} \left \frac{2^n (4x-8)^n}{n}\right ^2 $	$\frac{ 2n(4x-8) }{n+1} = 2 4x-8 $			
Ratio Test: Convergence for $L < 1$				
2 4x-8 < 1				
2 4(x-2) < 1	Interval of Convergence:			
8 x-2 < 1	$-\frac{1}{8} < x - 2 < \frac{1}{8}$			
$ x-2 < \frac{1}{8}$	$\frac{15}{8} < x < \frac{17}{8}$			
Radius of Convergence	End points need to be tested.			
$R=\frac{1}{8}$	٠			

http://www.millersville.edu/~bikenaga/calculus/intervals-of-convergence/ intervals-of-convergence.html http://blogs.ubc.com/infiniteseriesmodule/units/unit-3-power-series/power-series/ a-motivating-problem-for-power-series/ https://www.youtube.com/watch?v=Sw7PcBTgE0A https://www.youtube.com/watch?v=XWGPjZK0Yzw