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HL Math - Santowski 

Lesson 66 – Improper Integrals we will learn: 

How to solve definite integrals where the 
interval is infinite and where the function 

has an infinite discontinuity.  

Lesson Objectives: Setting the Stage: 

Recall from Lessons 46-50 what definite 
integrals are …….  

TECHNIQUES OF INTEGRATION 

In defining a definite integral                 ,  
we dealt with a function f defined on a finite 
interval [a, b] and we assumed that f does  
not have an infinite discontinuity  
(Lessons 46 – 50). 

Setting the Stage 

Given the following integrals, PREDICT their value 
and explain the reasoning behind your prediction. 

Now, evaluate the following integrals (via technology 
– i.e. www.wolframalpha.com ) 

Explain ….. ?  

Setting  the Stage – Challenges with Integrals 

Consider the following integrals and explain 
why evaluating these integrals MIGHT present 
a bit of an initial problem ……  

IMPROPER INTEGRALS 

In this section, we extend the concept  
of a definite integral to the cases where: 

  The interval is infinite 

  f has an infinite discontinuity in [a, b] 

In either case, the integral is called  
an improper integral.  

TYPE 1—INFINITE INTERVALS 

Consider the infinite region S that lies: 

  Under the curve y = 1/x2 

  Above the x-axis 

  To the right of the line x = 1 

INFINITE INTERVALS 

You might think that, since S is infinite  
in extent, its area must be infinite. 

 However, let’s take a closer look. 
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INFINITE INTERVALS 

The area of the shaded region approaches 
1 as t → ∞. 

INFINITE INTERVALS 

The area of the part of S that lies to the left  
of the line x = t (shaded) is: 

  Notice that  
A(t) < 1 no  
matter how  
large t is  
chosen. 

INFINITE INTERVALS 

We also observe that: 

INFINITE INTERVALS 

So, we say that the area of the infinite 
region S is equal to 1 and we write: 

INFINITE INTERVALS 

Using this example as a guide, we define  
the integral of f (not necessarily a positive 
function) over an infinite interval as the limit  
of integrals over finite intervals. 

IMPROPER INTEGRAL OF TYPE 1 

If               exists for every number t ≥ a,  
then 

provided this limit exists (as a finite number). 

Definition 1 a 

IMPROPER INTEGRAL OF TYPE 1 

If              exists for every number t ≤ a,  
then 

provided this limit exists (as a finite number). 

Definition 1 b CONVERGENT AND DIVERGENT 

The improper integrals                  and     
            are called: 

  Convergent if the corresponding limit exists. 

  Divergent if the limit does not exist. 

Definition 1 b IMPROPER INTEGRAL OF TYPE 1 

If both                   and                    are 
convergent, then we define: 

  Here, any real number a can be used. 

Definition 1 c 
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IMPROPER INTEGRALS OF TYPE 1 

Any of the improper integrals  
in Definition 1 can be interpreted  
as an area provided f is a positive 
function. 

IMPROPER INTEGRALS OF TYPE 1 

For instance, in case (a), suppose f(x) ≥ 0  
and the integral                  is convergent. 

  Then, we define the area of the region  
S = {(x, y) | x ≥ a, 0 ≤ y ≤ f(x)} in the figure as:  

IMPROPER INTEGRALS OF TYPE 1 

This is appropriate because                
is the limit as t → ∞ of the area under  
the graph of f from a to t.  

IMPROPER INTEGRALS OF TYPE 1 

Determine whether the integral  

is convergent or divergent. 

IMPROPER INTEGRALS OF TYPE 1 

According to Definition 1 a,  
we have: 

  The limit does not exist as a finite number. 
  So, the integral is divergent. 

IMPROPER INTEGRALS OF TYPE 1 

Let’s compare the result of this example with  
the example at the beginning of the section: 

 Geometrically, this means the following.  

IMPROPER INTEGRALS OF TYPE 1 

The curves y = 1/x2 and y = 1/x look very 
similar for x > 0. 

However, the region under y = 1/x2 to the right 
of x = 1 has finite area, but the corresponding 
region under y = 1/x has infinite area. 

Note that both 1/x2 and 1/x approach 0 as  
x → ∞, but 1/x2 approaches faster than 1/x.  

  The values of 1/x don’t decrease fast enough  
for its integral to have a finite value.  

IMPROPER INTEGRALS OF TYPE 1 IMPROPER INTEGRALS OF TYPE 1 

For what values of p is the integral 
  convergent? 

  We know from Example 1 that, if p = 1,  
the integral is divergent. 

  So, let’s assume that p ≠ 1. 

Generalization 
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IMPROPER INTEGRALS OF TYPE 1 

Then, 
Generalization IMPROPER INTEGRALS OF TYPE 1 

If p > 1, then p – 1 > 0. 

So, as t → ∞, t p-1 → ∞ and 1/t p-1 → 0. 

  Therefore, 

  So, the integral converges. 

Generalization IMPROPER INTEGRALS OF TYPE 1 

However, if p <1, then p – 1 < 0. 

So, 

  Thus, the integral diverges. 

Generalization 

IMPROPER INTEGRALS OF TYPE 1 

We summarize the result of Example 4  
for future reference: 

       is: 

  Convergent if p > 1 

  Divergent if p ≤ 1 

Definition 2 IMPROPER INTEGRALS OF TYPE 1 

Evaluate 

 Using Definition 1 b, we have: 

Example 2 IMPROPER INTEGRALS OF TYPE 1 

 We integrate by parts with u = x,  
dv = ex dx so that du = dx, v = ex: 

Example 2 

IMPROPER INTEGRALS OF TYPE 1 

 We know that et → 0 as t → -∞,  
and, by l’Hospital’s Rule,  
we have: 

Example 2 IMPROPER INTEGRALS OF TYPE 1 

 Therefore, 
Example 2 Example 3 

Evaluate	
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Example 3 

Evaluate	
  

We	
  need	
  to	
  use	
  integra1on	
  by	
  parts.	
  

Example 3 

Evaluate	
  

We	
  need	
  to	
  use	
  integra1on	
  by	
  parts.	
  

Example 3 

Evaluate	
  

We	
  need	
  to	
  use	
  integra1on	
  by	
  parts.	
  

Example 3 

Evaluate	
  

Example 3 

Evaluate	
  

Example 3 

Evaluate	
  

This	
  is	
  of	
  the	
  form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  so	
  we	
  will	
  use	
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  Rule	
  

Example 3 

Evaluate	
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is	
  0.	
  

IMPROPER INTEGRALS OF TYPE 1 

Evaluate 

  It’s convenient to choose a = 0 in Definition 1 c: 

Example 4 IMPROPER INTEGRALS OF TYPE 1 

We must now evaluate the integrals  
on the right side separately—as 
follows. 

Example 4 
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IMPROPER INTEGRALS OF TYPE 1 Example 4 IMPROPER INTEGRALS OF TYPE 1 

Since both these integrals are convergent, 
the given integral is convergent and 

Example 4 IMPROPER INTEGRALS OF TYPE 1 

As 1/(1 + x2) > 0, the given improper integral 
can be interpreted as the area of the infinite 
region that lies under the curve y = 1/(1 + x2) 
and above the x–axis. 

Example 4 

TYPE 2—DISCONTINUOUS INTEGRANDS 

Suppose f is a positive continuous 
function defined on a finite interval [a, b)  
but has a vertical asymptote at b. 

DISCONTINUOUS INTEGRANDS 

Let S be the unbounded region under  
the graph of f and above the x-axis 
between a and b. 

  For Type 1 integrals, the regions extended  
indefinitely in a horizontal direction. 

  Here, the region is infinite in a vertical direction. 

DISCONTINUOUS INTEGRANDS 

The area of the part of S between a and t 
(shaded region) is: 

DISCONTINUOUS INTEGRANDS 

If it happens that A(t) approaches a definite 
number A as t → b-, then we say that the area 
of the region S is A and we write: 

DISCONTINUOUS INTEGRANDS 

We use the equation to define an improper 
integral of Type 2 even when f is not a positive 
function—no matter what type of discontinuity 
f has at b. 

IMPROPER INTEGRAL OF TYPE 2 

If f is continuous on [a, b) and is discontinuous 
at b, then  

if this limit exists (as a finite number).  

Definition 3 a 
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IMPROPER INTEGRAL OF TYPE 2 

If f is continuous on (a, b] and is discontinuous 
at a, then 

if this limit exists (as a finite number). 

Definition 3 b IMPROPER INTEGRAL OF TYPE 2 

Definition 3 b is illustrated for the case  
where f(x) ≥ 0 and has vertical asymptotes  
at a and c, respectively. 

Definition 3 b IMPROPER INTEGRAL OF TYPE 2 

The improper integral                  
is called: 

  Convergent if the corresponding limit exists.  

  Divergent if the limit does not exist. 

Definition 3 b 

IMPROPER INTEGRAL OF TYPE 2 

If f has a discontinuity at c, where a < c < b, 
and both                  and                  are 
convergent, then we define: 

Definition 3 c IMPROPER INTEGRAL OF TYPE 2 

Definition 3 c is illustrated for the case  
where f(x) ≥ 0 and has vertical asymptotes  
at a and c, respectively. 

Definition 3 c IMPROPER INTEGRALS OF TYPE 2 

Find  

  First, we note that the given integral is improper 
because                    has the vertical asymptote  
x = 2. 

Example 5 

IMPROPER INTEGRALS OF TYPE 2 

  The infinite discontinuity occurs at the left end-point  
of [2, 5]. 

  So, we use Definition 3 b: 

  Thus, the given improper integral is convergent. 

Example 5 IMPROPER INTEGRALS OF TYPE 2 

 Since the integrand is positive,  
we can interpret the value of the integral  
as the area of the shaded region here.  

Example 5 Example 6 

Evaluate	
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Example 6 

Evaluate	
  

Example 6 

Evaluate	
  

Example 6 

Evaluate	
  

IMPROPER INTEGRALS OF TYPE 2 

Determine whether                    
converges or diverges. 

  Note that the given integral is improper  
because: 

Example 7 IMPROPER INTEGRALS OF TYPE 2 

  Using Definition 2 a and Formula 14 from the Table of 
Integrals, we have: 

  This is because sec t → ∞ and tan t → ∞ as t → (π/2)-. 

  Thus, the given improper integral is divergent. 

Example 7 Example 8 

Evaluate	
  

Example 8 

Evaluate	
  

Example 8 

Evaluate	
  

Example 8 

Evaluate	
  

	
  	
  	
  	
  

€ 

dx

(x −2)2/31

2

∫ = lim
k→2 −

dx

(x −2)2/31

k

∫ = lim
k→2 −

3(x −2)1/3[ ]

	
  	
  	
  	
  

€ 

lim
k→2 −

3(k −2)1/3 −3(1−2)1/3[ ] = 3
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Example 8 

Evaluate	
  

	
  	
  	
  	
  

€ 

dx

(x −2)2/32

4

∫ = lim
k→2 +

dx

(x −2)2/3k

4

∫ = lim
k→2 +

3(x −2)1/3[ ]

Example 8 

Evaluate	
  

	
  	
  	
  	
  

€ 

dx

(x −2)2/32

4

∫ = lim
k→2 +

dx

(x −2)2/3k

4

∫ = lim
k→2 +

3(x −2)1/3[ ]

	
  	
  	
  	
  

€ 

lim
k→2 +

3(4−2)1/3 −3(k −2)1/3[ ] = 3 23

Example 8 

Evaluate	
  

IMPROPER INTEGRALS OF TYPE 2 

Evaluate              if possible. 

  Observe that the line x = 1 is a vertical asymptote  
of the integrand.  

Example 9 IMPROPER INTEGRALS OF TYPE 2 

  As it occurs in the middle of the interval [0, 3],  
we must use Definition 3 c with c = 1: 

where 

  This is because 1 – t → 0+ as t → 1-. 

Example 9 IMPROPER INTEGRALS OF TYPE 2 

Thus,         is divergent.  

This implies that                    is divergent.  

  We do not need to evaluate  

Example 9 

WARNING 

Suppose we had not noticed the asymptote  
x = 1 in Example 9 and had, instead, 
confused the integral with an ordinary 
integral. 

WARNING 

Then, we might have made the following 
erroneous calculation: 

  This is wrong because the integral is improper  
and must be calculated in terms of limits. 

WARNING 

From now, whenever you meet the symbol 
          , you must decide, by looking 

at the function f on [a, b], whether it is either: 

  An ordinary definite integral 

  An improper integral 
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IMPROPER INTEGRALS OF TYPE 2 

Evaluate 

  We know that the function f(x) = ln x has  
a vertical asymptote at 0 since                      . 

  Thus, the given integral is improper,  
and we have: 

Example 10 IMPROPER INTEGRALS OF TYPE 2 

 Now, we integrate by parts with u = ln x,  
dv = dx, du = dx/x, and v = x: 

Example 10 IMPROPER INTEGRALS OF TYPE 2 

 To find the limit of the first term,  
we use l’Hospital’s Rule: 

Example 10 

IMPROPER INTEGRALS OF TYPE 2 

 Therefore, 
Example 10 IMPROPER INTEGRALS OF TYPE 2 

The geometric interpretation  
of the result is shown. 

  The area of the shaded  
region above y = ln x  
and below the x-axis is 1. 

Example 10 A COMPARISON TEST FOR IMPROPER INTEGRALS 

Sometimes, it is impossible to find the exact 
value of an improper integral and yet it is 
important to know whether it is convergent  

or divergent.  

  In such cases, the following theorem is useful.  

  Although we state it for Type 1 integrals,  
a similar theorem is true for Type 2 integrals. 

COMPARISON THEOREM 

Suppose f and g are continuous functions 
with f(x) ≥ g(x) ≥ 0 for x ≥ a. 

a.  If                   is convergent, then  
is convergent. 

b.  If                  is divergent, then  
is divergent. 

COMPARISON THEOREM 

We omit the proof of the theorem. 

However, the figure makes it seem 
plausible.  

COMPARISON THEOREM 

If the area under the top curve y = f(x)  
is finite, so is the area under the bottom 
curve y = g(x). 
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COMPARISON THEOREM 

If the area under y = g(x) is infinite,  
so is the area under y = f(x). 

COMPARISON THEOREM 

Note that the reverse is not necessarily 
true:  

  If                  is convergent,                   may  
or may not be convergent.  

  If                   is divergent,                   may  
or may not be divergent.  

COMPARISON THEOREM 

Show that                is convergent. 

  We can’t evaluate the integral directly. 

  The antiderivative of e-x2 is not an elementary function 

Example 11 

COMPARISON THEOREM 

We write: 

  We observe that the first integral on the right-hand side 
is just an ordinary definite integral. 

Example 11 COMPARISON THEOREM 

  In the second integral, we use the fact that,  
for x ≥ 1, we have x2 ≥ x. 

 So, –x2 ≤ -x and, therefore, e-x2  ≤ e-x. 

Example 11 COMPARISON THEOREM 

The integral of e-x is easy to evaluate: 
Example 11 

COMPARISON THEOREM 

Thus, taking f(x) = e-x and g(x) = e-x2  
in the theorem, we see that  
is convergent.  

  It follows that                  is convergent. 

Example 11 


