

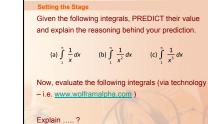
Lesson Objectives: we will learn: How to solve definite integrals where the interval is infinite and where the function

has an infinite discontinuity.

Setting the Stage:

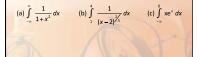
Recall from Lessons 46-50 what definite integrals are

TECHNIQUES OF INTEGRATION In defining a definite integral $\int_{a}^{b} f(x) dx$, we dealt with a function *f* defined on a finite interval [*a*, *b*] and we assumed that *f* does not have an infinite discontinuity (Lessons 46 – 50).

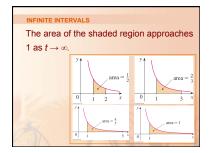


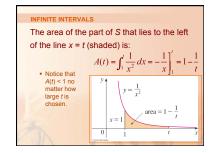
Setting the Stage – Challenges with Integrals

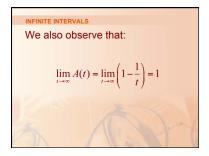
Consider the following integrals and explain why evaluating these integrals MIGHT present a bit of an initial problem

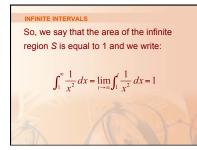


MPROPER INTEGRALS TYPE 1—INFINITE INTERVALS INFINITE INTERVALS In this section, we extend the concept Consider the infinite region S that lies: You might think that, since S is infinite of a definite integral to the cases where: in extent, its area must be infinite. • Under the curve $y = 1/x^2$ The interval is infinite Above the x-axis However, let's take a closer look. • f has an infinite discontinuity in [a, b] • To the right of the line x = 1 In either case, the integral is called an improper integral.





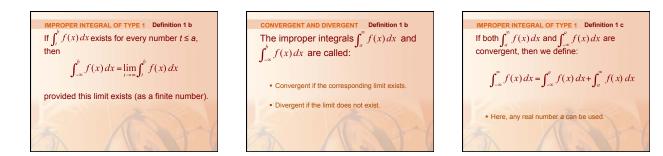




INFINITE INTERVALS

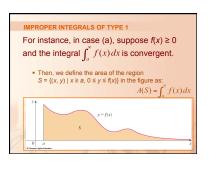
Using this example as a guide, we define the integral of f (not necessarily a positive function) over an infinite interval as the limit of integrals over finite intervals.

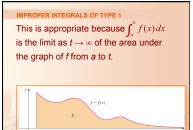
IMPROPER INTEGRAL OF TYPE 1 Definition 1 a If $\int_{a}^{t} f(x) dx$ exists for every number $t \ge a$, then $\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$ provided this limit exists (as a finite number).

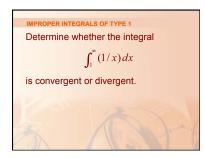


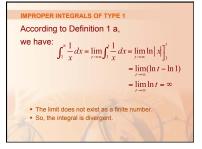
IMPROPER INTEGRALS OF TYPE 1

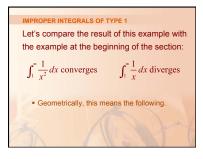
Any of the improper integrals in Definition 1 can be interpreted as an area provided *f* is a positive function.

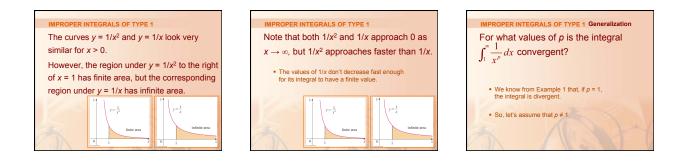


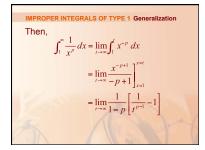


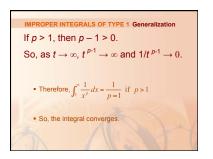


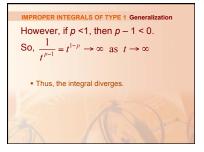


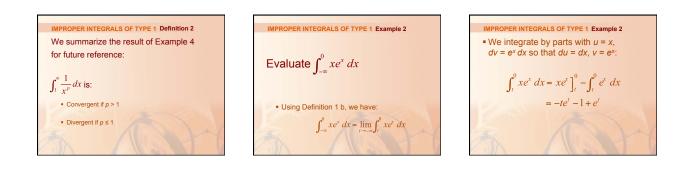


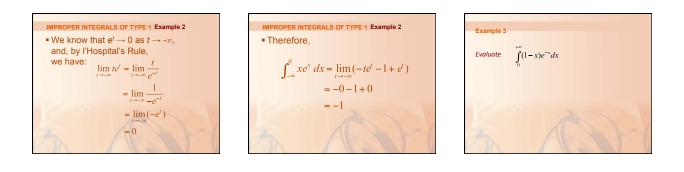






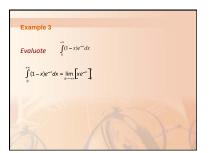


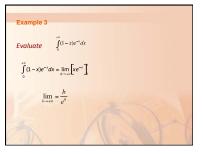




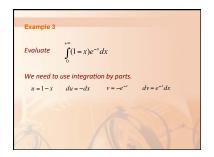
valuate $\int_{0}^{+\infty} (1-x)e^{-x}dx$ $\lim_{b \to +\infty} = \frac{b}{e^{b}}$	$y = (1 - x)e^{-x}$
$\lim_{b \to +\infty} = \frac{1}{e^b} = 0$	1 2 3 The net signed area between the graph and the interval [0, +∞) is zero.
e can interpret this to me	an that the net signed area
etween the graph of $y = (1 - 0)$	$-x)e^{-x}$ and the interval $[0,+\infty)$

IMPROPER INTEGRALS OF TYPE 1 Example 4 Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ • It's convenient to choose a = 0 in Definition 1 c: $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \int_{-\infty}^{0} \frac{1}{1+x^2} dx + \int_{0}^{\infty} \frac{1}{1+x^2} dx$





Example 3	
Evaluate $\int_{0}^{+\infty} (1-x)e^{-x}dx$	fx
$\lim_{b\to+\infty}=\frac{b}{e^b}$	
This is of the form $\frac{\alpha}{\alpha}$	so we will use L'Hopital's Rule
×	

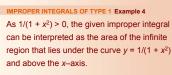


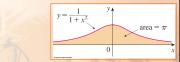
We need to use integration by parts. $u = 1 - x$ $du = -dx$ $v = -e^{-x}$ $dv = e^{-x}dx$
$u = 1 - x \qquad du = -dx \qquad v = -e^{-x} \qquad dv = e^{-x}dx$

Example 3	
Example o	
Evaluate	$\int_{0}^{+\infty} (1-x)e^{-x}dx$
	0
We need to $u = 1 - x$	b use integration by parts. $du = -dx$ $v = -e^{-x}$ $dv = e^{-x}dx$
$\int_{0}^{+\infty} (1-x)e^{-x}$	$f^{*}dx = -e^{-x}(1-x) - \int e^{-x}dx$
$\int_{0}^{+\infty} (1-x)e^{-x}$	$dx = -e^{-x} + xe^{-x} + e^{-x} = xe^{-x}$
0	

IMPROPER INTEGRALS OF	TYPE 1 Example 4
$\int_0^\infty \frac{1}{1+x^2} dx$	$\int_{-\infty}^{0} \frac{1}{1+x^2} dx$
$= \lim_{t \to \infty} \int_0^t \frac{dx}{1 + x^2}$ $= \lim_{t \to \infty} \tan^{-1} x \Big]_0^t$	$= \lim_{t \to \infty} \int_{t}^{0} \frac{dx}{1 + x^{2}}$ $= \lim_{t \to \infty} \tan^{-1} x \Big]_{t}^{0}$
$= \lim_{t \to \infty} (\tan^{-1} t - \tan^{-1} 0)$	$= \lim_{t \to -\infty} (\tan^{-1} 0 - \tan^{-1} t)$
$=\lim_{t\to\infty}\tan^{-1}t$	$=0-\left(-\frac{\pi}{2}\right)$
$=\frac{\pi}{2}$	$=\frac{\pi}{2}$

IMPR OPER INTEGRALS OF TYPE 1 Example 4 Since both these integrals are convergent, the given integral is convergent and $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi$



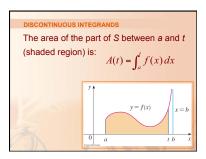


TYPE 2—DISCONTINUOUS INTEGRANDS Suppose *f* is a positive continuous function defined on a finite interval [*a*, *b*) but has a vertical asymptote at *b*.

DISCONTINUOUS INTEGRANDS

Let *S* be the unbounded region under the graph of *f* and above the *x*-axis between *a* and *b*.

- For Type 1 integrals, the regions extended indefinitely in a horizontal direction.
- Here, the region is infinite in a vertical direction.

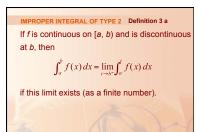


DISCONTINUOUS INTEGRANDS

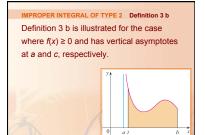
If it happens that A(t) approaches a definite number A as $t \rightarrow b^{-}$, then we say that the area of the region S is A and we write:

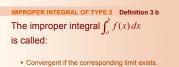
$\int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx$

We use the equation to define an improper integral of Type 2 even when *f* is not a positive function—no matter what type of discontinuity *f* has at *b*.

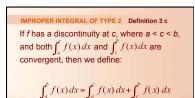


IMPROPER INTEGRAL OF TYPE 2 Definition 3 b If f is continuous on (a, b] and is discontinuous at a, then $\int_{a}^{b} f(x) dx = \lim_{t \to a^{*}} \int_{t}^{b} f(x) dx$ if this limit exists (as a finite number).

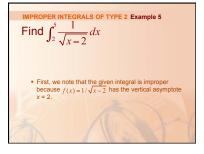


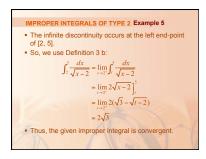


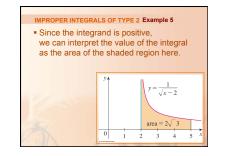
Divergent if the limit does not exist.

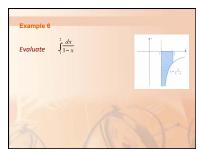


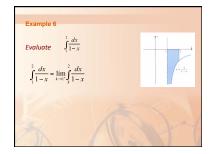
IMPROPER INTEGRAL OF TYPE 2 Definition 3 c Definition 3 c is illustrated for the case where $f(x) \ge 0$ and has vertical asymptotes at *a* and *c*, respectively.

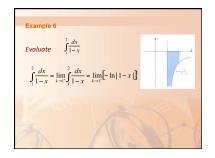




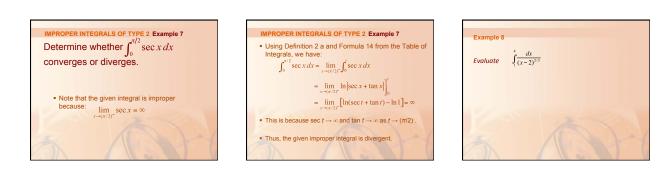




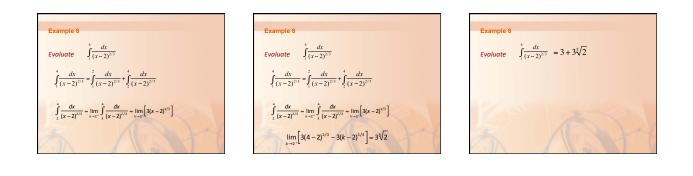


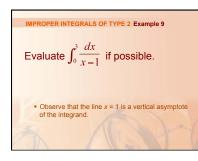


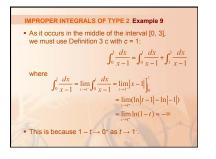
Example 6	
Evaluate $\int_{1-x}^{2} \frac{dx}{1-x}$	1 2
$\int_{1}^{2} \frac{dx}{1-x} = \lim_{k \to 1^{+}} \int_{k}^{2} \frac{dx}{1-x} = \lim_{k \to 1^{+}} \left[-\ln 1-x \right]_{k}^{2}$	$y = \frac{1}{1-x}$
$\lim_{k \to 1^{+}} \left[-\ln 1 - x \right] = -\ln -1 + \ln 1 - k$	≤ = −∞
A AG	

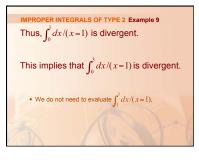


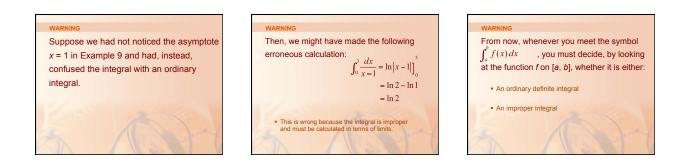
Example 8	Example 8	Example 8
Evaluate $\int_{1}^{4} \frac{dx}{(x-2)^{2/3}}$	Evaluate $\int_{1}^{4} \frac{dx}{(x-2)^{2/3}}$	Evaluate $\int_{1}^{4} \frac{dx}{(x-2)^{2/3}}$
$\int_{1}^{4} \frac{dx}{(x-2)^{2/3}} = \int_{1}^{2} \frac{dx}{(x-2)^{2/3}} + \int_{2}^{4} \frac{dx}{(x-2)^{2/3}}$	$\int_{1}^{4} \frac{dx}{(x-2)^{2/3}} = \int_{1}^{2} \frac{dx}{(x-2)^{2/3}} + \int_{2}^{4} \frac{dx}{(x-2)^{2/3}}$	$\int_{1}^{4} \frac{dx}{(x-2)^{2/3}} = \int_{1}^{2} \frac{dx}{(x-2)^{2/3}} + \int_{2}^{4} \frac{dx}{(x-2)^{2/3}}$
A AD	$\int_{1}^{2} \frac{dx}{(x-2)^{2/3}} = \lim_{x \to 2^{+}} \int_{1}^{1} \frac{dx}{(x-2)^{2/3}} = \lim_{x \to 2^{+}} \left[\Im(x-2)^{2/3} \right]$	$\int_{1}^{2} \frac{dx}{(x-2)^{1/3}} = \lim_{k \to 2^{1}} \int_{1}^{k} \frac{dx}{(x-2)^{1/3}} = \lim_{k \to 2^{1}} \left[\Im(x-2)^{1/3} \right]$ $\lim_{k \to 2^{1}} \left[\Im(k-2)^{1/3} - \Im(1-2)^{1/3} \right] = \Im$



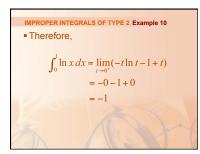


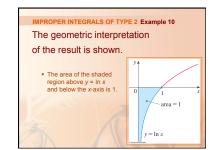


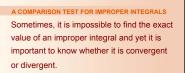




OPER INTEGRALS OF TYPE 2 Example 10 ER INTEGRALS OF TYPE 2 Example 10 MPR PER INTEGRALS OF TYPE 2 Example 10 • Now, we integrate by parts with $u = \ln x$, dv = dx, du = dx/x, and v = x: • To find the limit of the first term, Evaluate $\int_{0}^{1} \ln x \, dx$ we use l'Hospital's Rule: $\lim_{t \to 0^+} t \ln t = \lim_{t \to 0^+} \frac{\ln t}{1/t}$ $\int_{t}^{1} \ln x \, dx = x \ln x \Big] - \int_{t}^{1} dx$ • We know that the function $f(x) = \ln x$ has a vertical asymptote at 0 since $\lim_{x \to \infty} \ln x = -\infty$ $= 1 \ln 1 - t \ln t - (1 - t)$ • Thus, the given integral is improper, and we have: $\int_{0}^{1} \ln x \, dx = \lim_{r \to 0^{+}} \int_{r}^{1} \ln x \, dx$ $= -t \ln t - 1 + t$





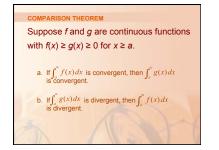


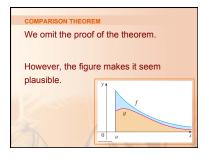
 $= \lim_{t \to 0^+} \frac{1/t}{-1/t^2}$

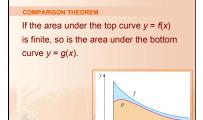
 $= \lim_{t \to 0^+} (-t)$ = 0

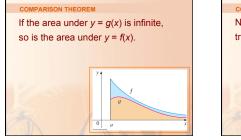
In such cases, the following theorem is useful.

Although we state it for Type 1 integrals, a similar theorem is true for Type 2 integrals.



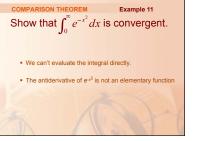


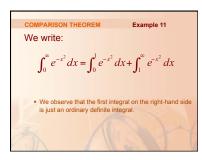


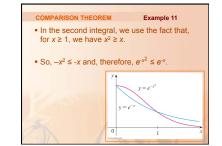


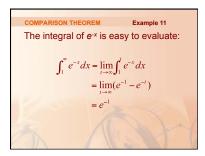
COMPARISON THEOREM Note that the reverse is not necessarily true:

- If $\int_{a}^{\infty} g(x) dx$ is convergent, $\int_{a}^{\infty} f(x) dx$ may or may not be convergent.
- If $\int_{a}^{\infty} f(x) dx$ is divergent, $\int_{a}^{\infty} g(x) dx$ may or may not be divergent.









	COMPARISON THEOREM Example 11
	Thus, taking $f(x) = e^{-x}$ and $g(x) = e^{-x^2}$ in the theorem, we see that $\int_{1}^{\infty} e^{-x^2} dx$
	is convergent.
	• It follows that $\int_0^\infty e^{-x^2} dx$ is convergent.
0	