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Lesson 66 — Improper Integrals

HL Math - Santowski

Lesson Objectives:

we will learn:

How to solve definite integrals where the
interval is infinite and where the function
has an infinite discontinuity.

Setting the Stage:

Recall from Lessons 46-50 what definite
integrals are .......

TECHNIQUES OF INTEGRATION
In defining a definite integralff(x)dx 5

we dealt with a function fdefir:ed on a finite
interval [a, b] and we assumed that f does
not have an infinite discontinuity

(Lessons 46 — 50).

Setting the Stage
Given the following integrals, PREDICT their value
and explain the reasoning behind your prediction.

(a)j %dx (b)j X—lldx (c)_? X%dx

Now, evaluate the following integrals (via technology
— i.e. www.wolframalpha.com )

Explain ..... ?

Setting the Stage — Challenges with Integrals

Consider the following integrals and explain
why evaluating these integrals MIGHT present
a bit of an initial problem ......

(a) ] g dx (b)} %dx (c)} xe™ dx

1+x° 1 (x=2/%

IMPROPER INTEGRALS
In this section, we extend the concept
of a definite integral to the cases where:

= The interval is infinite

= fhas an infinite discontinuity in [a, b]

In either case, the integral is called

an improper integral.

TYPE 1—INFINITE INTERVALS

Consider the infinite region S that lies:
= Under the curve y = 1/x2
= Above the x-axis

= To the right of the line x = 1

INFINITE INTERVALS
You might think that, since S is infinite
in extent, its area must be infinite.

= However, let’s take a closer look.
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INFINITE INTERVALS
The area of the shaded region approaches
1ast— oo,

INFINITE INTERVALS
The area of the part of S that lies to the left
of the line x = t (shaded) is:

= Notice that

A(f)<1no
matter how
large tis
chosen.

INFINITE INTERVALS
We also observe that:

lim A(?) = lim(l—;) =1

INFINITE INTERVALS
So, we say that the area of the infinite
region S is equal to 1 and we write:

= il R
) ?dx=}ir£}ﬂ?dx=l

INFINITE INTERVALS
Using this example as a guide, we define
the integral of f (not necessarily a positive
function) over an infinite interval as the limit
of integrals over finite intervals.

IMPROPER INTEGRAL OF TYPE 1  Definition 1 a

If ff(x) dx exists for every number ¢ 2 a,
4

then

f: S(x)dx=lim f (%) dx

provided this limit exists (as a finite number).

IMPROPER INTEGRAL OF TYPE 1 Definition 1 b
Ifﬁf(x)dxexists for every number t < a,
then

[ @ydv=lim [ 7(x)dx

provided this limit exists (as a finite number).

CONVERGENT AND DIVERGENT  Definition 1 b
The improper integralsf f(x)dx and
f F(x)dx are called:

= Convergent if the corresponding limit exists.

= Divergent if the limit does not exist.

IMPROPER INTEGRAL OF TYPE 1  Definition 1 ¢

If both f” £(x)dx and f F(x)dx are

convergent, then we define:

[ r@dx= [ fedee |7 f(2) d

= Here, any real number a can be used.
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IMPROPER INTEGRALS OF TYPE 1

Any of the improper integrals

in Definition 1 can be interpreted
as an area provided fis a positive
function.

IMPROPER INTEGRALS OF TYPE 1
For instance, in case (a), suppose f(x) 2 0
and the integralf f(x)dx is convergent.

= Then, we define the area of the region
S={(x,y)| x2a,0<y<f(x)}in the figure as:

AS) = [ f)dx

¥ fixl

o a x

IMPROPER INTEGRALS OF TYPE 1
This is appropriate because f f(x)dx
is the limit as t — o of the area under
the graph of f from a to t.

¥ fixl

0

IMPROPER INTEGRALS OF TYPE 1
Determine whether the integral

fa/x)dx

is convergent or divergent.

IMPROPER INTEGRALS OF TYPE 1

According to Definition 1 a,

we have:
> . 1 . d

S - Il

=lim(Inz-Inl)

i
=limInz =

1=

= The limit does not exist as a finite number.
= So, the integral is divergent.

IMPROPER INTEGRALS OF TYPE 1
Let's compare the result of this example with
the example at the beginning of the section:

1

f " L, dx converges f =L dx diverges
5 L

= Geometrically, this means the following.

IMPROPER INTEGRALS OF TYPE 1
The curves y = 1/x2 and y = 1/x look very
similar for x > 0.

However, the region under y = 1/x2 to the right
of x = 1 has finite area, but the corresponding
region under y = 1/x has infinite area.

IMPROPER INTEGRALS OF TYPE 1
Note that both 1/x2 and 1/x approach 0 as
X — oo, but 1/x2 approaches faster than 1/x.

= The values of 1/x don’t decrease fast enough
for its integral to have a finite value.

IMPROPER INTEGRALS OF TYPE 1 Generalization
For what values of p is the integral

3

f de convergent?
L xP

= We know from Example 1 that, if p = 1,
the integral is divergent.

= So, let's assume that p # 1.




10/10/15

IMPROPER INTEGRALS OF TYPE 1 Generalization
Then,
© 1 . .
f —dx=11mflx P dx
1 xP t—xJl

=limL{L_1]

IMPROPER INTEGRALS OF TYPE 1 Generalization
Ifp>1,thenp—-1>0.

So, as t — oo, t”" — cwand 1/t”" - 0.

. Therefore,ﬁyindx=% if p>1
o p-

= So, the integral converges.

IMPROPER INTEGRALS OF TYPE 1 Generalization
However, if p <1, then p—1 < 0.
1
So,
i

=177 >0 35 t >®

= Thus, the integral diverges.

IMPROPER INTEGRALS OF TYPE 1 Definition 2
We summarize the result of Example 4
for future reference:

=11
f—dx is:
1 x?
= Convergentifp>1

= Divergentifp <1

IMPROPER INTEGRALS OF TYPE 1 Example 2

0
Evaluate f_ xe* dx

= Using Definition 1 b, we have:

fixe" dx= ,lilirlﬁﬁ xé' dx

IMPROPER INTEGRALS OF TYPE 1 Example 2

= We integrate by parts with u = x,
dv = eXdx so that du = dx, v = eX:

ﬁ)xe" dx= xe"]? —j:u e dx

=—te' —1+¢'

IMPROPER INTEGRALS OF TYPE 1 Example 2

= We know that e — 0 as t — -,
and, by I'Hospital’s Rule,

we have: | ., .
lim ze' = lim
{—>—% t—>- C—l
= lim
t—>—% _e”
= lim(-¢")
=)

-0

IMPROPER INTEGRALS OF TYPE 1 Example 2

= Therefore,

ff x¢* dx=lim(~1d —1+ &)
=-0-1+0
=i

Example 3

Evaluate j‘(l —x)e "dx
[
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Example 3

Evaluate f(l —x)e "dx
[

Example 3
o

Evaluate f(] —x)e "dx
0

We need to use integration by parts.

Example 3
Evaluate f(l —x)e “dx
0

We need to use integmn’on by parts.
u=Il-x du=—dx v=-e

We need to use integration by parts. g g
lv=e"dx
u=1-x du=—dx v=—e dv=edx u=l-x  du=-dx v=—e" dv=edx
42 -
f(l — e e (I —fe’*dx -W{(px)e dx= - (1)~ fe dx
Y -
JU-2e dx= e +xe” e = xe
d
Example 3 Example 3 Example 3

Evaluate {(‘ g

Z(l —x)e "dx = bliarll:xe":[

Evaluate {(‘ g
{ (1-x)e”ax = Jim e |

. b
Mg

Evalugte  [(1-x)e7dx
d

. b
lim =—
e

This is of the form z so we will use L’Hopital’s Rule

Example 3

Evaluate {(‘ g 4

lim = — -3
[=rea |

lim =

oy

We can interpret this to mean that the net signed area

between the graph of y =(1-x)e™* and the interval [0,+%)

is 0.

IMPROPER INTEGRALS OF TYPE 1 Example 4

Evaluate f” dx

1+x*

= It's convenient to choose a = 0 in Definition 1 c:

CI | o 1 @ 1
-J-*’Wd/“z-[’lfw(2 d,\‘+j; 1+x* &

IMPROPER INTEGRALS OF TYPE 1 Example 4

We must now evaluate the integrals
on the right side separately—as
follows.
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IMPROPER INTEGRALS OF TYPE 1 Example 4

o 1,
— /x
j;l+xzdx 14 x
q dx  lim 0 dx
:l’l’nljzhxz "”J: 1+x*
0
=limtan™ x]/ = lim tan”! x]
i 0 1
—lim(tan" 7~ tan'0) | = lim(tan™0-tan")
=limtan™'¢ S (i
i~ 5
n
=5 oz
2

IMPROPER INTEGRALS OF TYPE 1 Example 4
Since both these integrals are convergent,
the given integral is convergent and

f 2dx=£+£=ﬂ
= 1+x 2 2

IMPROPER INTEGRALS OF TYPE 1 Example 4

As 1/(1 + x?) > 0, the given improper integral
can be interpreted as the area of the infinite

region that lies under the curve y = 1/(1 + x2)
and above the x—axis.

area = m

TYPE 2—DISCONTINUOUS INTEGRANDS

Suppose fis a positive continuous
function defined on a finite interval [a, b)
but has a vertical asymptote at b.

DISCONTINUOUS INTEGRANDS

Let S be the unbounded region under
the graph of fand above the x-axis
between a and b.

= For Type 1 integrals, the regions extended
indefinitely in a horizontal direction.

= Here, the region is infinite in a vertical direction.

DISCONTINUOUS INTEGRANDS

The area of the part of S between a and ¢

(shaded region) is:
Am=ﬁﬂﬂﬂ

DISCONTINUOUS INTEGRANDS

If it happens that A(f) approaches a definite
number A as t — b, then we say that the area
of the region S is A and we write:

[ rdx=tim [ fx)dx

DISCONTINUOUS INTEGRANDS

We use the equation to define an improper
integral of Type 2 even when fis not a positive
function—no matter what type of discontinuity
fhas at b.

IMPROPER INTEGRAL OF TYPE 2 Definition 3 a
If fis continuous on [a, b) and is discontinuous
at b, then

jf f(x)dx = lim f F(x)dx

if this limit exists (as a finite number).
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IMPROPER INTEGRAL OF TYPE 2 Definition 3 b
If fis continuous on (a, b] and is discontinuous
at a, then

f: S(x)dx=lim j’ F(x)dx

if this limit exists (as a finite number).

IMPROPER INTEGRAL OF TYPE 2  Definition 3 b
Definition 3 b is illustrated for the case
where f(x) 2 0 and has vertical asymptotes
at a and c, respectively.

IMPROPER INTEGRAL OF TYPE 2  Definition 3 b
The improper integralff(x)dx
is called:

= Convergent if the corresponding limit exists.

= Divergent if the limit does not exist.

IMPROPER INTEGRAL OF TYPE 2 Definition 3 ¢

If f has a discontinuity at ¢, where a<c < b,
and bothff(x) dx and fjf(x)dx are
convergenat, then we define:

Jff(x)dx=£f(x)dx+jff(x)dx

IMPROPER INTEGRAL OF TYPE 2 Definition 3 ¢
Definition 3 ¢ is illustrated for the case
where f(x) 2 0 and has vertical asymptotes
at a and c, respectively.

IMPROPER INTEGRALS OF TYPE 2 Example 5

. 1
Find [ —d
I Lzt

= First, we note that the given integral is improper
because f(x)=1/+/x-2 has the vertical asymptote
xX=2.

IMPROPER INTEGRALS OF TYPE 2 Example 5

= The infinite discontinuity occurs at the left end-point
of [2, 5].

= So, we use Definition 3 b:

s dx . o

NSy ey a1 e
=]ix:r]2x/,\‘72:|g
:11;92(\/5-\&-2)

=228

= Thus, the given improper integral is convergent.

IMPROPER INTEGRALS OF TYPE 2 Example 5

= Since the integrand is positive,
we can interpret the value of the integral
as the area of the shaded region here.

Example 6

Evaluate
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Example 6

Evaluate

% dx . Zdx
Jie T

Example 6

Evaluate

2 dx . Ldx .
Pl -

Example 6

lim [—Inll—xl] =-In|-1|+In|1-k|= -
k1"

IMPROPER INTEGRALS OF TY/PE 2 Example 7
2

Determine whetherJ: secxdx

converges or diverges.

= Note that the given integral is improper

IMPROPER INTEGRALS OF TYPE 2 Example 7
= Using Definition 2 a and Formula 14 from the Table of
Integrals, we have:
ﬁ secxdx = “l’l;nzfﬁsec xdx

‘
= lim In ‘sec X+ tan r‘]
x—s(a/2) 9

.

= lim [ln(secl-v»tanl)—lnl]:oo
x=(x/2)

Example 8

L dx
Evaluate .‘f(x, D&

because: :
lim secx =00
x—(/2)
! = This is because sec t — « and tan t — w0 as t — (m/2).
= Thus, the given improper integral is divergent.
Example 8 Example 8 Example 8

L dx
Evaluate .‘f(x, D&

L dx L dx © dx
e oo

L dx
Evaluate .‘f(x, D&

4 2

dx
[om

dx y

dx
[ e

2

dx L dx S
————=lim [——5=lim|3(x-2)""
{(x-zw; kLT"{(X—Z)Z/S Sl

L dx
Evaluate .‘f(x, D&

L dx L dx © dx
=
= fim 3(x -2

dx h dx
o i [ ————
{(x 21 isr { (x-2*"

lim [3(k~2)"* ~3(1-2)"] =3
k=2~
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Example 8

L dx
Evaluate .‘f(x, AF

L dx L dx L dx
[ faam e

= L dx )
{m'k'.r{m-m[g(,_z),n]

Example 8

‘. dx
Evaluate .‘f( =7

L dx L dx © dx
e e

3 4

==
) g lm.

dx i
-
G

lim [3(4-2)"* ~3(k~2)"*] = 312
k—=2"

Example 8

Evaluate

dx
e =3+332

IMPROPER INTEGRALS OF TYPE 2 Example 9

dx

Evaluate j:; if possible.

= Observe that the line x = 1 is a vertical asymptote
of the integrand.

IMPROPER INTEGRALS OF TYPE 2 Example 9
= As it occurs in the middle of the interval [0, 3],
we must use Definition 3 ¢ with ¢ = 1:
3 dx ! dx 3 dx

| e e

=lim ’i=]i1“q‘r—l‘]

—~1rJo x —1

o
= ]im(ln‘l —1‘ =In ‘—1‘)
—1-

= limIn(1-7) =~
Lt

= This is because 1 -t — 0*as t — 1.

IMPROPER INTEGRALS OF TYPE 2 Example 9
1
Thus,fodx/(x—l) is divergent.

This implies thatjidx/(x—l)is divergent.

5
= We do not need to eva\ualeﬁ dx/(x-1).

WARNING
Suppose we had not noticed the asymptote
x =1 in Example 9 and had, instead,
confused the integral with an ordinary
integral.

WARNING
Then, we might have made the following
erroneous calculation:

3
f3£=ln‘x—l‘]
0x-1 0
=In2-Inl

=In?2

= This is wrong because the integral is improper
and must be calculated in terms of limits.

WARNING
From now, whenever you meet the symbol

fhf(x)dx , you must decide, by looking
a“t the function fon [a, b], whether it is either:

= An ordinary definite integral

= An improper integral
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IMPROPER INTEGRALS OF TYPE 2 Example 10

Evaluatej:lnxdx

= We know that the function f(x) = In x has
a vertical asymptote at 0 since lim Inx = —o .
0"

= Thus, the given integral is improper,
and we have: | ’
f Inxdx= limf In xdx
o —0"Jt

IMPROPER INTEGRALS OF TYPE 2 Example 10

= Now, we integrate by parts with u = In x,
dv =dx, du=dx/x,and v = x:
11 ] J
j: nxdx=x n,\] —J: dx

=1Inl-tInt—(1-1)
=—tlnt-1+¢

IMPROPER INTEGRALS OF TYPE 2 Example 10
= To find the limit of the first term,
we use I'Hospital’s Rule:

lim ¢In¢ ST
1—0" -0t 1/t
1
= lim =
ey
— lif(~)
1—=0*

=0

IMPROPER INTEGRALS OF TYPE 2 Example 10
= Therefore,

jjlnxdx= lim(=tlnz-1+17)
1—0"

=-0-1+0
=-1

IMPROPER INTEGRALS OF TYPE 2 Example 10
The geometric interpretation
of the result is shown.

= The area of the shaded
region above y = In x
and below the x-axis is 1.

A COMPARISON TEST FOR IMPROPER INTEGRALS
Sometimes, it is impossible to find the exact
value of an improper integral and yet it is
important to know whether it is convergent
or divergent.

= In such cases, the following theorem is useful.

= Although we state it for Type 1 integrals,
a similar theorem is true for Type 2 integrals.

COMPARISON THEOREM
Suppose fand g are continuous functions
with f{(x) 2 g(x) = 0 for x = a.

a. Iffy f(x)dx is convergent, then fg(x)dx
is convergent. ‘

b. Ifj; g(x)dx s divergent, thean/(X)dX
is divergent. a

COMPARISON THEOREM

We omit the proof of the theorem.

However, the figure makes it seem
plausible.

COMPARISON THEOREM

If the area under the top curve y = f(x)
is finite, so is the area under the bottom
curve y = g(x).

10
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COMPARISON THEOREM
If the area under y = g(x) is infinite,
so is the area under y = f(x).

COMPARISON THEOREM
Note that the reverse is not necessarily
true:

. Iff’ g(x)dxis convergent‘fx‘/'(x)dx may
of may not be convergent. **

L S(x)dx is divergent,fa g(x)dx may
of may not be divergent. *“

COMPARISON THEOREM Example 11
Show that f e™ dx is convergent.
0

= We can't evaluate the integral directly.

= The antiderivative of e is not an elementary function

COMPARISON THEOREM Example 11
We write:

2 2 l_xz SN 2
Le'dx:ﬁ)e dx+£e dx

= We observe that the first integral on the right-hand side
is just an ordinary definite integral.

COMPARISON THEOREM Example 11

= In the second integral, we use the fact that,
for x 2 1, we have x2 2 x.

= So, —x2 < -x and, therefore, e < e,

COMPARISON THEOREM Example 11
The integral of e is easy to evaluate:

J: edx= }Lrgﬂ e“dx
=lim(e™ —e™)

=il
=e

COMPARISON THEOREM Example 11
Thus, taking f(x) = e* and g(x) = e
in the theorem, we see thatj; e " dx

is convergent.

= It follows thatﬁj e dx is convergent.

1



