

Lesson Objectives Review the previous two types of FODEs that we already know how to solve Introduce homogeneous DEs and solve using substitution

Homogeneous Functions

A function f (x, y) in x and y is called a homogenous function, if the degrees of each term are equal. Examples:

 $g(x, y) = x^2 - xy + y^2$ is a homogeneous function of degree 2

 $f(x, y) = x^3 + 3x^2y + 2y^2x$ is a homogeneous function of degree 3

Homogeneous Differential Equations
$\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)}$
where f (x, y) and g(x, y) is a homogeneous functions of the same degree in x and y, then it is called homogeneous differential equation.
Example: $\frac{dy}{dx} = \frac{y^3 + 3xy^2}{x^3}$ is a homogeneous differential equation as
$y^3 + 3xy^2$ and x^3 both are homogeneous functions of degree 3.

