

Diploma Programme

Mathematics HL guide

First examinations 2014

Topic 2—Core: Functions and equations

22 hours

The aims of this topic are to explore the notion of function as a unifying theme in mathematics, and to apply functional methods to a variety of mathematical situations. It is expected that extensive use will be made of technology in both the development and the application of this topic.

	Content	Further guidance	Links
2.1	Concept of function $f: x \mapsto f(x)$: domain, range; image (value). Odd and even functions. Composite functions $f \circ g$. Identity function. One-to-one and many-to-one functions. Inverse function f^{-1} , including domain	$(f \circ g)(x) = f(g(x))$. Link with 6.2. Link with 3.4. Link with 6.2.	 Int: The notation for functions was developed by a number of different mathematicians in the 17th and 18th centuries. How did the notation we use today become internationally accepted? TOK: The nature of mathematics. Is mathematics simply the manipulation of symbols under a set of formal rules?
	restriction. Sen-inverse functions.		

	Content	Further guidance	Links
2.2	The graph of a function; its equation $y = f(x)$. Investigation of key features of graphs, such as maximum and minimum values, intercepts, horizontal and vertical asymptotes and symmetry, and consideration of domain and range. The graphs of the functions $y = f(x) $ and	Use of technology to graph a variety of functions.	 TOK: Mathematics and knowledge claims. Does studying the graph of a function contain the same level of mathematical rigour as studying the function algebraically (analytically)? Appl: Sketching and interpreting graphs; Geography SL/HL (geographic skills); Chemistry 11.3.1
	y = f(x). The graph of $y = \frac{1}{f(x)}$ given the graph of $y = f(x)$.		Int: Bourbaki group analytical approach versus Mandlebrot visual approach.
2.3	Transformations of graphs: translations; stretches; reflections in the axes. The graph of the inverse function as a reflection in $y = x$.	Link to 3.4. Students are expected to be aware of the effect of transformations on both the algebraic expression and the graph of a function.	Appl: Economics SL/HL 1.1 (shift in demand and supply curves).
2.4	The rational function $x \mapsto \frac{ax+b}{cx+d}$, and its graph. The function $x \mapsto a^x$, $a > 0$, and its graph. The function $x \mapsto \log_a x$, $x > 0$, and its graph.	The reciprocal function is a particular case. Graphs should include both asymptotes and any intercepts with axes. Exponential and logarithmic functions as inverses of each other. Link to 6.2 and the significance of e. Application of concepts in 2.1, 2.2 and 2.3.	Appl: Geography SL/HL (geographic skills); Physics SL/HL 7.2 (radioactive decay); Chemistry SL/HL 16.3 (activation energy); Economics SL/HL 3.2 (exchange rates).

	Content	Further guidance	Links
2.5	Polynomial functions and their graphs.	The graphical significance of repeated factors.	
	The factor and remainder theorems.	The relationship between the degree of a	
	The fundamental theorem of algebra.	polynomial function and the possible numbers of <i>x</i> -intercepts.	
2.6	Solving quadratic equations using the quadratic	May be referred to as roots of equations or zeros of functions.	Appl: Chemistry 17.2 (equilibrium law).
	formula.		Appl: Physics 2.1 (kinematics).
	Use of the discriminant $\Delta = b^2 - 4ac$ to determine the nature of the roots.		Appl: Physics 4.2 (energy changes in simple harmonic motion).
	Solving polynomial equations both graphically and algebraically.	Link the solution of polynomial equations to conjugate roots in 1.8.	Appl: Physics (HL only) 9.1 (projectile motion).
	Sum and product of the roots of polynomial equations.	For the polynomial equation $\sum_{r=0}^{n} a_r x^r = 0$,	Aim 8: The phrase "exponential growth" is used popularly to describe a number of phenomena. Is this a misleading use of a mathematical term?
		the sum is $\frac{-a_{n-1}}{a_n}$,	
		the product is $\frac{(-1)^n a_0}{a_n}$.	
	Solution of $a^x = b$ using logarithms.		
	Use of technology to solve a variety of equations, including those where there is no appropriate analytic approach.		
1			

	Content	Further guidance	Links
2.7	Solutions of $g(x) \ge f(x)$.		
	Graphical or algebraic methods, for simple polynomials up to degree 3.		
	Use of technology for these and other functions.		