(A) Lesson Context

BIG PICTURE of this UNIT:	 What is a Polynomial and how do they look? What are the attributes of a Polynomial? How do I work with Polynomials? 		
CONTEXT of this	Where we've been	Where we are	Where we are heading
LESSON:	We have discussed the basic appearance of graphs of polynomial functions	How can we determine the zeroes of a polynomial function when the equation is in standard form?	What are the key attributes of a polynomial and how do these affect the shape?

(B) Lesson Objectives:

- a. Understand the connection between roots, zeroes and factors.
- b. Work with the method of synthetic division in order to determine roots and zeroes of polynomials.
- c. Factor and sketch polynomial functions when equations are presented in standard form.

(C) Examples

- 1. Which binomials are factors of $P(x) = 2x^3 x^2 7x + 6$? (a) x + 3 (b) 2x 3
- 2. Which binomials are factors of $P(x) = -2x^4 7x^3 + 22x^2 + 63x 36$? (a) x 1 (b) x 3
- 3. Given the polynomial $P(x) = x^3 2x^2 21x 18$, is x = 6 a zero of P(x)? is x = -2 a zero of P(x)?
- 4. Given the polynomial $P(x) = x^4 3x^3 + 3x^2 3x + 2$, is x = 2 a root of P(x)? is x = -2 a root of P(x)?
- 5. Given the polynomial $g(x) = 2x^3 + x^2 27x 35$, one factor of x + 3 is given. Determine the other factors.
- 6. Factor $P(x) = x^4 6x^3 + 22x^2 30x + 13$ given that x = 1 is a double root.
- 7. Given the polynomial $h(x) = x^4 + 3x^3 x 3$, one of the roots is x = -3. Determine the other roots.
- 8. Determine all roots of the polynomial $A(x) = x^3 + x^2 7x + 2$, given the following graph of A(x)

- 9. Factor using the Factor Theorem: $f(x) = x^3 3x^2 10x + 24$
- 10. Factor using the Factor Theorem: $f(x) = x^4 + 2x^3 23x^2 24x + 144$
- 11. Sketch the function $g(x) = 6 + 5x 2x^2 x^3$
- 12. Sketch the function $f(x) = 3x^3 + x^2 22x 24$ & label all intercepts.
- 13. Sketch the function $f(x) = x^4 + x^3 7x^2 x + 6$ & label all intercepts.