A. <u>Lesson Co</u>	niexi		
BIG PICTURE of this UNIT:	 How & why do we build NEW knowledge in Mathematics? What NEW IDEAS & NEW CONCEPTS can we now explore with specific references to QUADRATIC FUNCTIONS? How can we extend our knowledge of FUNCTIONS, given our BASIC understanding of Functions? 		
CONTEXT of this LESSON:	Where we've been In Lesson 2, you reviewed a second method for solving quadratic eqns: completing the square & reviewed the idea of an INVERSE	Where we are NOW we will focus on addressing the idea of Inverses of Functions → what ARE inverses of functions & how do we work with inverses of fcns	Where we are heading How do we extend our knowledge & skills of the algebra of quadratic fcns, and build in new ideas & concepts involving fcns.

A Losson Contoxt

B. Lesson Objectives

- a. Introduce the concept of inverse functions through an exploration
- b. Introduce the inverse function notations
- c. Apply the concept of inverse linear & quadratic & exponential functions through a variety of representations

C. FAST FIVE: Skills Review

(a) Solve for x if -3 = 2x + 5	(a) Solve for x if y = 2x + 5
(b) Solve for x if 3x – 2(2) = 5	(b) Solve for x if 3x – 2y = 5
(c) Solve for x if 8 – 5 = 3(x – 2)	(c) Solve for x if y – 5 = 3(x – 2)
(d) Solve for x if 3(x + 2) ² + 5 = 32	(d) Solve for x if 3(x + 2) ² + 5 = y

(e) Solve for x if $-\frac{1}{2}(x-1)^2 - 2 = -4$	(e) Solve for x if $-\frac{1}{2}(x-1)^2 - 2 = y$

D. Opening Exploration – PART 1

For American tourists visiting Canada, temperature data might seem a bit unusual. So a simplified "rule of thumb" for converting a temperature in degrees Celsius into degrees Fahrenheit is to double the Celcius temperature and then add 30.

(a) Copy and complete the table using the visitor's rule.

°C	-10	0	10	20	30	40
°F						

(b) Graph the relation.

	60
	50
	40
	-30
	20
	10
-90-80-70-60-50-40-30-20-	
	-20
	-30
	-40
	-50
	-60
	70

(c) What is the independent variable?

(d) What is the dependent variable?

(e) Does our "temperature conversion rule" define a function? Explain.

(f) Let f represent the rule. What ordered pair, (0,???), belongs to f ?

(g) Let x represent the temperature in degrees Celsius. Write the equation for this rule in function notation.

(h) In the table, f(10) = 50, which corresponds to a point on the graph of y = f(x). What is the x-coordinate of this point? What is its y -coordinate?

E. Opening Exercise – PART 2

For CANADIAN tourists visiting THE US, temperature data might seem a bit unusual. So a simplified "rule of thumb" for converting a temperature in degrees Celsius into degrees Fahrenheit is

(a) Copy and complete the table using the visitor's rule.

°F	50	60	70	80	90	100
°C						

(c) What is the independent variable?

(d) What is the dependent variable?

(b) Graph the relation.

(e) Does our "temperature conversion rule" define a function? Explain.

(f) Let f represent the rule. What ordered pair, (0,???), belongs to f ?

(g) Let x represent the temperature in degrees Celsius. Write the equation for this rule in function notation.

(h) In the table, f(50) = 10, which corresponds to a point on the graph of y = f(x). What is the x-coordinate of this point? What is its y -coordinate?

F. Examples – Working with Mappings & Relations

The graph of y = f(x) is shown.

- i. State the domain and range of *f*.
- ii. Draw an arrow diagram for f^{-1} .
- iii. Evaluate.
- (a) f(2) (b) f(4) (c) $f^{-1}(1)$ (d) $f^{-1}(4)$
- iv. Graph $y = f^{-1}(x)$.
- v. Is f^{-1} a function? Explain.
- vi. State the domain and range of f^{-1} .

- 1. For each set of ordered pairs,
 - i. graph the relationship and its inverse
 - ii. is the relationship a function? Is the inverse a function? Explain.
 - (a) $\{(0, 1), (1, 3), (2, 5), (3, 7)\}$ (b) $\{(0, 3), (1, 3), (2, 3), (3, 3)\}$
 - (c) $\{(1, 1), (1, 2), (1, 3), (1, 4)\}$

For each of the following,

- i. draw an arrow diagram for the inverse relationship
- ii. state whether or not each inverse defines a function, and justify your answer

G. Key Concepts & Notations

- d. The **inverse** of a relation and a function maps each output of the original relation back onto the corresponding input value. The inverse is the "reverse" of the original relation, or function
- e. f^{-1} is the name given for the inverse relation.
- f. $f^{-1}(x)$ represents the expression for calculating the value of f^{-1} .
- g. If $(a,b) \in f$, then $(b,a) \in f^{-1}$.
- h. Given a table of values for a function, interchange the independent and dependent variables to get a table for the inverse relation.
- i. The domain of f is the range of f^{-1} and then range of f is the domain of f^{-1} .
- j. To determine the equation of the inverse in function notation, interchange x and y and solve for y.

H. Examples – Working with Linear Relations

Example 3

The table shows all of the ordered pairs belonging to function g.

- (a) Determine g(x).
- (b) Write the table for the inverse relation.
- (c) Evaluate g(5).
- (d) Evaluate $g^{-1}(5)$.
- (e) What are the coordinates of the point that corresponds to $g^{-1}(5)$ on the graph of g^{-1} ?

(f) What are the coordinates of the point on the graph of g that corresponds to $g^{-1}(5)$?

(g) Determine $g^{-1}(x)$.

Example 5

A relation is h(x) = -4x + 6, where $\{x \mid -2 \le x \le 3, x \in \mathbb{R}\}$.

- (a) Sketch the graph of y = h(x).
- (b) Sketch the graph of $y = h^{-1}(x)$.
- (c) State the domain and range of *h*.
- (d) State the domain and range of h^{-1} .
- (e) Are h and h^{-1} functions? Explain.
- **13.** Communication: An electronics store pays its employees by commission. The relation p(s) = 100 + 0.05s is used to find an employee's weekly pay, p, in dollars, where s represents the employee's weekly sales in dollars.
 - (a) Describe the function as a rule.
 - (b) Determine p⁻¹(s).
 - (c) Describe the inverse function as a rule.
 - (d) Describe a situation where the employee might use the inverse function.
 - (e) State a reasonable domain and range for p^{-1} .

x	у
1	5
2	7
3	9
4	11
5	13

FURTHER EXAMPLES

FURTHER EXAMPLES

ADVANCED EXAMPLES

(G) Composing with Inverses

- Now let f(x) = x² + 2.
- Determine the inverse of y = f(x)
- Graph both functions on a grid/graph in a square view window
- Graph the line y = x. What do you observe? Why?
- What transformation are we considering in this scenario?
- Now compose as follows fof⁻¹(x) and f⁻¹of(x). What do you notice?

Math SL1 - Santowski

11/22/2014