Exponential and
Logarithmic Functions

®

MOST of the functions we have considered so far have been polynomial or
rational functions, with a few others involving roots of polynomial or rational
functions. Functions that can be expressed in terms of addition, subtraction,
multiplication, division, and the taking of roots of variables and constants are
called algebraic functions.

In Chapter 5 we introduce and investigate the properties of exponential func-
tions and logarithmic functions. These functions are not algebraic; they belong to
the class of transcendental functions. Exponential and logarithmic functions are
used to model a variety of real-world phenomena: growth of populations of peo-
ple, animals, and bacteria; radioactive decay; epidemics; absorption of light as it
passes through air, water, or glass; magnitudes of sounds and earthquakes. We
consider applications in these areas plus many more in the sections that follow.
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EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Exponential Models

Mathematical Modeling
Data Analysis and Regression

A Comparison of Exponential Growth Phenomena

In Section 5-2 we use exponential functions to model a wide variety of real-world
phenomena, including growth of populations of people, animals, and bacteria;
radioactive decay; spread of epidemics; propagation of rumors; light intensity;
atmospheric pressure; and electric circuits. The regression techniques introduced in
Chapters 2 and 3 to construct linear and quadratic models are extended to construct
exponential models.

> Mathematical Modeling

Populations tend to grow exponentially and at different rates. A convenient and easily
understood measure of growth rate is the doubling time—that is, the time it takes for
a population to double. Over short periods the doubling time growth model is often
used to model population growth:

P = P27

where P = Population at time ¢
P, = Population at time ¢ = 0

d = Doubling time
Note that when ¢ = d,
P =P =py

and the population is double the original, as it should be. We use this model to solve
a population growth problem in Example 1.

Population Growth
Nicaragua has a population of approximately 6 million and it is estimated that the
population will double in 36 years. If population growth continues at the same rate,

what will be the population:

(A) 15 years from now? (B) 40 years from now?
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SOLUTIONS
We use the doubling time growth model:
P =P
Substituting P, = 6 and d = 36, we obtain

P =6(27° Figue1

P (millions)
A
20

16 !

12 A1

8

4

Years

> Figure 1
P = 6(2739).

(A) Find P when ¢t = 15 years:
P = 6(2'%/3%) = 8 million
(B) Find P when t = 40 years:

P = 6(2*3%) = 13 million

MATCHED PROBLEM 1 ]

471

The bacterium Escherichia coli (E. coli) is found naturally in the intestines of many
mammals. In a particular laboratory experiment, the doubling time for E. coli is found
to be 25 minutes. If the experiment starts with a population of 1,000 E. coli and there

is no change in the doubling time, how many bacteria will be present:
(A) In 10 minutes? (B) In 5 hours?

Write answers to three significant digits.
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EXPLORE-DISCUSS 1

The doubling time growth model would not be expected to give accurate
results over long periods. According to the doubling time growth model of
Example 1, what was the population of Nicaragua 500 years ago when it was
settled as a Spanish colony? What will the population of Nicaragua be
200 years from now? Explain why these results are unrealistic. Discuss
factors that affect human populations that are not taken into account by the
doubling time growth model.

As an alternative to the doubling time growth model, we can use the equation

kt
y=ce"

where y = Population at time ¢

¢ = Population at time 0

k = Relative growth rate

The relative growth rate k has the following interpretation: Suppose that y = ce®

models the population growth of a country, where y is the number of persons and ¢
is time in years. If the relative growth rate is £ = 0.03, then at any time ¢, the popu-
lation is growing at a rate of 0.03y persons (that is, 3% of the population) per year.
Example 2 illustrates this approach.

Medicine—Bacteria Growth

Cholera, an intestinal disease, is caused by a cholera bacterium that multiplies expo-
nentially by cell division as modeled by

N — Noel.386t
where N is the number of bacteria present after # hours and N, is the number of
bacteria present at + = 0. If we start with 1 bacterium, how many bacteria will be
present in
(A) 5 hours? (B) 12 hours?
Compute the answers to three significant digits.
SOLUTIONS

(A)Use Ny = l and t = 5:

N = Nye'8%"  LetNg=1andt=5.

1. . .
= e 38605 Calculate to three significant digits.

1,020
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(B) Use Ny = 1 and ¢t = 12:

N = Nye'38¢ Let No =1 and t = 12,

= 61'386(12) Calculate to three significant digits.

16,700,000

MATCHED PROBLEM 2

0.783¢

Repeat Example 2 if N = Nye and all other information remains the same.

Exponential functions can also be used to model radioactive decay, which is
sometimes referred to as negative growth. Radioactive materials are used extensively
in medical diagnosis and therapy, as power sources in satellites, and as power sources
in many countries. If we start with an amount 4, of a particular radioactive isotope,
the amount declines exponentially in time. The rate of decay varies from isotope to
isotope. A convenient and easily understood measure of the rate of decay is the
half-life of the isotope—that is, the time it takes for half of a particular material to
decay. We use the following half-life decay model:

A= 4,0
— Aozft/h

where A = Amount at time ¢
Ay = Amount at time = 0
h = Half-life

Note that when ¢t = 5,

4
A= 427" =427 =22

and the amount of isotope is half the original amount, as it should be.

Radioactive Decay

The radioactive isotope gallium 67 (°’Ga), used in the diagnosis of malignant tumors,
has a biological half-life of 46.5 hours. If we start with 100 milligrams of the isotope,
how many milligrams will be left after

(A) 24 hours? (B) 1 week?

Compute answers to three significant digits.
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SOLUTIONS
We use the half-life decay model:

A= A" = 427"
Using 4, = 100 and & = 46.5, we obtain

A = 10027 "7%3)  Figure 2

A (milligrams)
A

100

\

50

100 200
Hours

> Figure 2
A =100(2Y/46:5),

(A) Find 4 when ¢ = 24 hours:

A= 100(2724/46'5) Calculate to three significant digits.

69.9 milligrams

(B) Find 4 when ¢t = 168 hours
(1 week = 168 hours):

A= 100(2_168/46‘5) Calculate to three significant digits.

8.17 milligrams ®

MATCHED PROBLEM 3 ]

Radioactive gold 198 (**®*Au), used in imaging the structure of the liver, has a half-
life of 2.67 days. If we start with 50 milligrams of the isotope, how many milligrams
will be left after:

(A) 3 day?  (B) 1 week?
Compute answers to three significant digits. ®

As an alternative to the half-life decay model, we can use the equation y = ce ~,

where ¢ and k are positive constants, to model radioactive decay. Example 4 illustrates
this approach.
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Carbon-14 Dating

Cosmic-ray bombardment of the atmosphere produces neutrons, which in turn react
with nitrogen to produce radioactive carbon-14. Radioactive carbon-14 enters all living
tissues through carbon dioxide, which is first absorbed by plants. As long as a plant
or animal is alive, carbon-14 is maintained in the living organism at a constant level.
Once the organism dies, however, carbon-14 decays according to the equation

A= A0670.000124f

where 4 is the amount of carbon-14 present after ¢ years and A4, is the amount pres-
ent at time + = 0. If 1,000 milligrams of carbon-14 are present at the start, how many
milligrams will be present in

(A) 10,000 years? (B) 50,000 years?

Compute answers to three significant digits.

SOLUTIONS

Substituting 4, = 1,000 in the decay equation, we have

A = 1,000e 0000124 pioie 3

1,000

500

»
>

| ' ' ' ' 50,'000

> Figure 3

(A) Solve for 4 when ¢t = 10,000:

A= 1,000670'000124(10’000) Calculate to three significant digits.

= 289 milligrams

(B) Solve for A when ¢ = 50,000:

A= 1,000870'000124(50’000) Calculate to three significant digits.

= 2.03 milligrams

More will be said about carbon-14 dating in Exercise 5-5, where we will be inter-
ested in solving for ¢ after being given information about 4 and A,,.
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MATCHED PROBLEM 4

Referring to Example 4, how many milligrams of carbon-14 would have to be pres-
ent at the beginning to have 10 milligrams present after 20,000 years? Compute the
answer to four significant digits.

We can model phenomena such as learning curves, for which growth has an
upper bound, by the equation y = ¢(1 — e~ *’), where ¢ and k are positive constants.
Example 5 illustrates such limited growth.

Learning Curve

People assigned to assemble circuit boards for a computer manufacturing company
undergo on-the-job training. From past experience, it was found that the learning curve
for the average employee is given by

N =40(1 —e ™)

where N is the number of boards assembled per day after ¢ days of training (Fig. 4).

»

50

40
30 A
20 /

» t

10 20 30 40 50
Days

> Figure 4
N = 40(1 — e 12,

(A) How many boards can an average employee produce after 3 days of training?
After 5 days of training? Round answers to the nearest integer.

(B) Does N approach a limiting value as ¢ increases without bound? Explain.
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SOLUTION

(A) When ¢t = 3,
N = 40(1 - 670'12(3)) =12 Rounded to nearest integer

so the average employee can produce 12 boards after 3 days of training.
Similarly, when ¢ = 5,

N = 40(1 - 670'12(5)) =18 Rounded to nearest integer

—0.12¢

Because e approaches 0 as ¢ increases without bound,

N =401 — e *'*)—40(1 — 0) = 40

So the limiting value of N is 40 boards per day. (Note the horizontal asymptote
with equation N = 40 that is indicated by the dashed line in Fig. 4.)

MATCHED PROBLEM 5

A company is trying to expose as many people as possible to a new product through
television advertising in a large metropolitan area with 2 million potential viewers.
A model for the number of people N, in millions, who are aware of the product after
t days of advertising was found to be

N = 2(1 _ e—OA037t)
(A) How many viewers are aware of the product after 2 days? After 10 days?
Express answers as integers, rounded to three significant digits.
(B) Does N approach a limiting value as ¢ increases without bound? Explain.

We can model phenomena such as the spread of an epidemic or the propagation
of a rumor by the logistic equation.

M

P70 e M

where M, ¢, and k are positive constants. Logistic growth, illustrated in Example 6,
approaches a limiting value as ¢ increases without bound.

Logistic Growth in an Epidemic

A community of 1,000 individuals is assumed to be homogeneously mixed. One indi-
vidual who has just returned from another community has influenza. Assume the
community has not had influenza shots and all are susceptible. The spread of the dis-
ease in the community is predicted to be given by the logistic curve

1,000

Nf) = ————+
@ 1 + 99993

where N is the number of people who have contracted influenza after ¢ days (Fig. 5).
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N

A
1,500

1,200

900

600

300

y
10 20 30 40 50
Days

» t

> Figure 5
1,000

"1+ 999e 03

(A) How many people have contracted influenza after 10 days? After 20 days?
Round answers to the nearest integer?

(B) Does N approach a limiting value as ¢ increases without bound? Explain.
SOLUTIONS
(A) When ¢t = 10,

- 1,000 .
1+ 999030100

20 Rounded to nearest integer

so 20 people have contracted influenza after 10 days. Similarly, when ¢ = 20,

1,000

=— - —— =288 Rounded to nearest integer
1+ 999¢ ™3¢0

so 288 people have contracted influenza after 20 days.

(B) Because e ° approaches 0 as ¢ increases without bound,

3 1,000 1,000
1+ 999¢ %3 1+ 999(0)

= 1,000

So the limiting value is 1,000 individuals (all in the community will eventually
contract influenza). (Note the horizontal asymptote with equation N = 1,000
that is indicated by the dashed line in Fig. 5.) ®

MATCHED PROBLEM 6 ]

A group of 400 parents, relatives, and friends are waiting anxiously at Kennedy
Airport for a charter flight returning students after a year in Europe. It is stormy and
the plane is late. A particular parent thought he had heard that the plane’s radio had
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gone out and related this news to some friends, who in turn passed it on to others.
The propagation of this rumor is predicted to be given by

N(t) _ &
1 + 399 %4

where N is the number of people who have heard the rumor after # minutes.

(A) How many people have heard the rumor after 10 minutes? After 20 minutes?
Round answers to the nearest integer.

(B) Does N approach a limiting value as ¢ increases without bound? Explain.

> Data Analysis and Regression

We use exponential regression to fit a function of the form y = ab™ to a set of data
points, and logistic regression to fit a function of the form

c

e 1+ ae™™

to a set of data points. The techniques are similar to those introduced in Chapters 2
and 3 for linear and quadratic functions.

Infectious Diseases

The U.S. Department of Health and Human Services published the data in Table 1.

Table 1 Reported Cases of Infectious Diseases

Year Mumps Rubella
1970 104,953 56,552
1980 8,576 3,904
1990 5,292 1,125
1995 906 128
2000 323 152

An exponential model for the data on mumps is given by
N = 91,400(0.835)

where N is the number of reported cases of mumps and ¢ is time in years with = 0
representing 1970.
(A) Use the model to predict the number of reported cases of mumps in 2010.

(B) Compare the actual number of cases of mumps reported in 1980 to the number
given by the model.
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SOLUTIONS

(A) The year 2010 is represented by ¢ = 40. Evaluating N = 91,400(0.835)" at
t = 40 gives a prediction of 67 cases of mumps in 2010.

(B) The year 1980 is represented by ¢+ = 10. Evaluating N = 91,400(0.835)" at
t = 10 gives 15,060 cases in 1980. The actual number of cases reported in
1980 was 8,576, nearly 6,500 less than the number given by the model.

Figure 6 shows the details of constructing the
exponential model of Example 7 on a graphing

ﬁ Tech nology calculator.

sjejelele] (Connections

110,000

L1 Lz Lx x EpreE
— g=akb

o |ae 2=31364, 63045

%E EEEE b=.834931901 3 s 45

g4 Bz 2=, 35H21 28727

____________ F=-.37P0E9593
Lzi1= ]

10,000
(a) Entering the data (b) Finding the model (c) Graphing the data

and the model

» Figure 6

MATCHED PROBLEM 7

An exponential model for the data on rubella in Table 1 is given by
N = 44,500(0.815)"

where N is the number of reported cases of rubella and 7 is time in years with # = 0
representing 1970.
(A) Use the model to predict the number of reported cases of rubella in 2010.

(B) Compare the actual number of cases of rubella reported in 1980 to the
number given by the model.
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AIDS Cases and Deaths
The U.S. Department of Health and Human Services published the data in Table 2.

Table 2 Acquired Immunodeficiency Syndrome (AIDS)
Cases and Deaths in the United States

Cases Known

Diagnosed Deaths

Year to Date to Date
1985 23,185 12,648
1988 107,755 62,468
1991 261,259 159,294
1994 493,713 296,507
1997 672,970 406,179
2000 774,467 447,648
2003 929,985 524,060

A logistic model for the data on AIDS cases is given by

948,000
I+ 17.8¢ %217

where N is the number of AIDS cases diagnosed by year ¢ with # = 0 representing 1985.

(A) Use the model to predict the number of AIDS cases diagnosed by 2010.

(B) Compare the actual number of AIDS cases diagnosed by 2003 to the number
given by the model.

SOLUTIONS
(A) The year 2010 is represented by #+ = 25. Evaluating

B 948,000
1 + 17.8¢ 0317

at t = 25 gives a prediction of approximately 942,000 cases of AIDS diagnosed
by 2010.

(B) The year 2003 is represented by ¢ = 18. Evaluating

3 948,000
1 + 17.8¢ 0317

at t = 18 gives 895,013 cases in 2003. The actual number of cases diagnosed by
2003 was 929,985, nearly 35,000 greater than the number given by the model.
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Figure 7 shows the details of constructing the
logistic model of Example 7 on a graphing calculator.

Connections

1,000,000

Hamted = |

z
1t
i8

9z098c

w
T

OO0

I mng

Lz1=

0

(a) Entering the data (b) Finding the model (c) Graphing the data and the

» Figure 7

model

MATCHED PROBLEM 8

A logistic model for the data on deaths from AIDS in Table 2 is given by

B 520,000
1 + 19.3¢7 9353

where N is the number of known deaths from AIDS by year ¢ with + = 0 represent-
ing 1985.

(A) Use the model to predict the number of known deaths from AIDS by 2010.

(B) Compare the actual number of known deaths from AIDS by 2003 to the
number given by the model.

A Comparison of Exponential Growth Phenomena

The equations and graphs given in Table 3 compare the growth models discussed in
Examples 1 through 8. Following each equation and graph is a short, incomplete list
of areas in which the models are used. In the first case (unlimited growth), y — o as
t — . In the other three cases (exponential decay, limited growth, and logistic growth),
the graph approaches a horizontal asymptote as t — o; these asymptotes (y = 0,y = ¢,
and y = M, respectively) are easily deduced from the given equations. Table 3 only
touches on a subject that you are likely to study in greater depth in the future.
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Exponential Models

Table 3 Exponential Growth and Decay

Description Equation Graph Uses
Unlimited growth y = ce" y Short-term population growth (people, bacteria. etc.);
¢, k>0 t growth of money at continuous compound interest
C
0 >t
Exponential decay y=ce ™ y Radioactive decay; light absorption in water, glass,
c, k>0 4 and the like; atmospheric pressure; electric circuits
c
>
0 >t
Limited growth y=c(l —e M) y Learning skills; sales fads; company growth; electric
¢, k>0 ' circuits
P
0 >
Logistic growth y= M K Long-term population growth; epidemics; sales of
1+ ce ™ new products; company growth
ek, M >0 e
0 >t
ANSWERS TO MATCHED PROBLEMS ]
1. (A) 1,320 bacteria  (B) 4,100,100 = 4.10 X 10° bacteria
2. (A) 50 bacteria (B) 12,000 bacteria
3. (A) 43.9 milligrams (B) 8.12 milligrams 4. 119.4 milligrams
5. (A) 143,000 viewers; 619,000 viewers
(B) N approaches an upper limit of 2 million, the number of potential viewers
6. (A) 48 individuals; 353 individuals
(B) N approaches an upper limit of 400, the number of people in the entire group.
7. (A) 12 cases
(B) The actual number of cases was 1,850 less than the number given by the model.
8. (A) 519,000 deaths

(B) The actual number of known deaths was approximately 21,000 greater than the
number given by the model.
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Exercises

APPLICATIONS

1. GAMING A person bets on red and black on a roulette wheel
using a Martingale strategy. That is, a $2 bet is placed on red,
and the bet is doubled each time until a win occurs. The process
is then repeated. If black occurs 7 times in a row, then L = 2"
dollars is lost on the nth bet. Graph this function for 1 =n = 10.
Although the function is defined only for positive integers,
points on this type of graph are usually joined with a smooth
curve as a visual aid.

2. BACTERIAL GROWTH If bacteria in a certain culture double
every 3 hour, write an equation that gives the number of bacte-
ria N in the culture after ¢ hours, assuming the culture has
100 bacteria at the start. Graph the equation for 0 =7 = 5.

3. POPULATION GROWTH Because of its short life span and
frequent breeding, the fruit fly Drosophila is used in some ge-
netic studies. Raymond Pearl of Johns Hopkins University, for
example, studied 300 successive generations of descendants of
a single pair of Drosophila flies. In a laboratory situation with
ample food supply and space, the doubling time for a particular
population is 2.4 days. If we start with 5 male and 5 female flies,
how many flies should we expect to have in
(A) 1 week? (B) 2 weeks?

4. POPULATION GROWTH If Kenya has a population of about
34,000,000 people and a doubling time of 27 years and if the
growth continues at the same rate, find the population in
(A) 10 years (B) 30 years

Compute answers to 2 significant digits.

5. INSECTICIDES The use of the insecticide DDT is no longer
allowed in many countries because of its long-term adverse
effects. If a farmer uses 25 pounds of active DDT, assuming
its half-life is 12 years, how much will still be active after
(A) 5 years? (B) 20 years?

Compute answers to two significant digits.

6. RADIOACTIVE TRACERS The radioactive isotope
technetium-99m (**™Tc) is used in imaging the brain. The
isotope has a half-life of 6 hours. If 12 milligrams are used, how
much will be present after
(A) 3 hours? (B) 24 hours?

Compute answers to three significant digits.

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

7. POPULATION GROWTH If the world population is about
6.5 billion people now and if the population grows continuously
at a relative growth rate of 1.14%, what will the population be in
10 years? Compute the answer to two significant digits.

8. POPULATION GROWTH If the population in Mexico is
around 106 million people now and if the population grows con-
tinuously at a relative growth rate of 1.17%, what will the popu-
lation be in 8 years? Compute the answer to three significant
digits.

9. POPULATION GROWTH In 2005 the population of Russia

was 143 million and the population of Nigeria was 129 mil-
lion. If the populations of Russia and Nigeria grow continu-
ously at relative growth rates of —0.37% and 2.56%, respec-
tively, in what year will Nigeria have a greater population than
Russia?

10. POPULATION GROWTH In 2005 the population of Germany
was 82 million and the population of Egypt was 78 million. If
the populations of Germany and Egypt grow continuously at
relative growth rates of 0% and 1.78%, respectively, in what
year will Egypt have a greater population than Germany?

11. SPACE SCIENCE Radioactive isotopes, as well as solar
cells, are used to supply power to space vehicles. The isotopes
gradually lose power because of radioactive decay. On a partic-
ular space vehicle the nuclear energy source has a power output
of P watts after 7 days of use as given by

P = 75, 0:0035¢
Graph this function for 0 = ¢ = 100.

12, EARTH SCIENCE The atmospheric pressure P, in pounds
per square inch, decreases exponentially with altitude %, in
miles above sea level, as given by

P = 14.7¢ 021
Graph this function for 0 = # = 10.

13. MARINE BIOLOGY Marine life is dependent upon the
microscopic plant life that exists in the photic zone, a zone
that goes to a depth where about 1% of the surface light still
remains. Light intensity / relative to depth d, in feet, for one
of the clearest bodies of water in the world, the Sargasso Sea in
the West Indies, can be approximated by

[ = [ye000%42d



where [ is the intensity of light at the surface. To the nearest
percent, what percentage of the surface light will reach a
depth of

(A) 50 feet? (B) 100 feet?

14. MIARINE BIOLOGY Refer to Problem 13. In some waters
with a great deal of sediment, the photic zone may go down only
15 to 20 feet. In some murky harbors, the intensity of light d feet
below the surface is given approximately by

[ = Ie 02

What percentage of the surface light will reach a depth of
(A) 10 feet? (B) 20 feet?

15. AIDS EPIDEMIC The World Health Organization estimated
that 39.4 million people worldwide were living with HIV in
2004. Assuming that number continues to increase at a relative
growth rate of 3.2% compounded continuously, estimate the
number of people living with HIV in

(A)2010 (B) 2015

16. AIDS EPIDEMIC The World Health Organization estimated
that there were 3.1 million deaths worldwide from HIV/AIDS
during the year 2004. Assuming that number continues to
increase at a relative growth rate of 4.3% compounded
continuously, estimate the number of deaths from HIV/AIDS
during the year

(A) 2008 (B) 2012

17. NEWTON’S LAW OF COOLING This law states that the rate
at which an object cools is proportional to the difference in tem-
perature between the object and its surrounding medium. The
temperature 7 of the object ¢ hours later is given by

T=T,+ (Ty— T,e ™

where 7, is the temperature of the surrounding medium and 7,
is the temperature of the object at # = 0. Suppose a bottle of
wine at a room temperature of 72°F is placed in the refrigerator
to cool before a dinner party. If the temperature of in the refrig-
erator is kept at 40°F and & = 0.4, find the temperature of the
wine, to the nearest degree, after 3 hours. (In Exercise 5-5 we
will find out how to determine £.)

18. NEWTON’'S LAW OF COOLING Refer to Problem 17. What
is the temperature, to the nearest degree, of the wine after
5 hours in the refrigerator?

19. PHOTOGRAPHY An electronic flash unit for a camera is ac-
tivated when a capacitor is discharged through a filament of
wire. After the flash is triggered, and the capacitor is discharged,
the circuit (see the figure) is connected and the battery pack gen-
erates a current to recharge the capacitor. The time it takes for
the capacitor to recharge is called the recycle time. For a partic-
ular flash unit using a 12-volt battery pack, the charge ¢, in
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coulombs, on the capacitor ¢ seconds after recharging has
started is given by
g = 0.0009(1 — e %)

Find the value that ¢ approaches as ¢ increases without bound
and interpret.

20. MEDICINE An electronic heart pacemaker uses the same
type of circuit as the flash unit in Problem 19, but it is designed
so that the capacitor discharges 72 times a minute. For a partic-
ular pacemaker, the charge on the capacitor # seconds after it
starts recharging is given by

g = 0.000 008(1 — ¢~ )

Find the value that ¢ approaches as ¢ increases without bound
and interpret.

21. WILDLIFE MANAGEMENT A herd of 20 white-tailed deer is
introduced to a coastal island where there had been no deer be-
fore. Their population is predicted to increase according to the
logistic curve

_ 100
- 1 + de 014

where N is the number of deer expected in the herd after ¢ years.
(A) How many deer will be present after 2 years? After 6 years?
Round answers to the nearest integer.

(B) How many years will it take for the herd to grow to 50 deer?
Round answer to the nearest integer.

(C) Does N approach a limiting value as ¢ increases without
bound? Explain.

22, TRAINING A trainee is hired by a computer manufacturing
company to learn to test a particular model of a personal com-
puter after it comes off the assembly line. The learning curve for
an average trainee is given by

v 200
4+ 21e Y

(A) How many computers can an average trainee be expected to
test after 3 days of training? After 6 days? Round answers to the
nearest integer.

(B) How many days will it take until an average trainee can test
30 computers per day? Round answer to the nearest integer.

(C) Does N approach a limiting value as ¢ increases without
bound? Explain.



