1. Change the following quadratic equations from standard form to factored form. Show the key steps of your solution and communicate your solution using proper mathematical formatting.

a.
$$y = x^2 - 3x - 18$$
 (K2)

b.
$$y = 6x^2 - x - 15$$
 (K3)

2. A quadratic function has been graphed for you. Determine the equation of the function in standard form. (A4)

3. Change the following quadratic equations from factored form to standard form. Show the key steps of your solution and communicate your solution using proper mathematical formatting.

(K4/C1)

a.
$$y = (2x - 5)(1 - 4x)$$
 (K2)

b.
$$y = (3x - 2)^2$$
 (K2)

- 4. A quadratic function is written in standard form as $f(x) = 3x^2 6x 24$.
 - a. Write the quadratic function in factored form. (K2) b. Determine the zeroes of this quadratic function. (K2)

- c. <u>ALGEBRAICALLY</u>, determine the optimum value of the function. <u>(K2)</u>
- d. Sketch a properly labeled graph on the grid provided, labeling the following key features: zeroes, vertex, y-intercept, label function as well). (C3)

<u>(T1)</u>

- 5. The country of MathLandia has been measuring the population growth rate for the last 20 years (given that the country imposed a 1 child per family policy in 1992). A quadratic model is used to show the relationship between the population growth rate (% growth per year) and the number of years since 1992 as $P(y) = 0.02y^2 0.47y + 2.15$. To answer this question, use your TI-84 to help you to determine the following:
 - a. The population growth rate at the beginning, when the policy was first introduced. **(K1)**
- b. When was the population not growing?

- c. Write the equation in factored form.
- d. State the domain and range IN WORDS.

<u>(T1)</u>

- 6. A quadratic function, P(x), is used to model the profits (in millions of \$) of a motorcycle company as a function of the number of motorcycles they produce (x, measured in thousands). The initial profit was \$2,000,000.
 - a. The zeroes of the profit function are at x = -4 and x = 10. Determine the equation of the function that models the company's profits.

 (A3)
- b. Interpret the meaning of each of the zeroes in the context of the question. (C2)

- c. What maximum profit does the company make? Show/explain the analysis that leads to your answer. (A2)
- d. Sketch the parabola on the grid provided. Label key points and as well as the function. (A3)

- e. Evaluate and interpret P(8.5). (A1/C1)
- f. Solve the equation 1.65 = P(x). Interpret your solution. Show/explain the analysis that leads to your solution. (A2/C1)

- 6. CONTINUED. A quadratic function, P(x), is used to model the profits (in millions of \$) of a motorcycle company as a function of the number of motorcycles they produce (x, measured in thousands of motorcycles). The initial profit was \$2,000,000.
 - g. The owner of the company (who is NOT a math student!!!) wants to increase the number of motorcycles produced from 6000 to 7000. The owner wants your advice (since you ARE a math student!!!):
 - i. How much profit does the company make if they make 6000 motorcycles? (A1)
- ii. Will the company still make a profit if the production level is increased from 6000 to 7000?Show/explain the analysis that leads to your conclusion. (T2)

- iii. From a FINANCIAL perspective, would you think this is a good FINANCIAL decision? Explain/show your reasoning. (T1)
- iv. What NON-financial reasons would the owner have in making this business decision? Give one reason. **(T1)**

TEST SCORES:

Application (A)	Communication (C)	Knowledge (K)	Thinking/PS (T)	Overall Score
/16	<u>/9</u>	<u>/16</u>	<u>/8</u>	