(A) Lesson Context

BIG PICTURE of this UNIT:	 How do we analyze and then make conclusions from a data set? (Math) How do I present my data and the outcomes of my analysis? (Math) How do I use data & statistics to make decisions? How do I decide on the validity/reliability of my data? Of my analysis? Of my conclusions? Of my decision? 						
	Where we've been	Where we are	Where we are heading				
CONTEXT of this							
LESSON:	Using data & visual	How do we prepare and	How do I analyze and make				
	representations, present analyze frequency conclusions from a data						
	your current histograms, frequency set, in whatever way this						
	understandings of what	polygons and cumulative	data gets presented?				
	Statistics is	frequency?					

(B) Lesson Objectives:

- a. Starting from a set of raw data, prepare a grouped frequency table using absolute and relative frequencies
- b. Use either the grouped frequency tables or the histograms to prepare frequency polygons
- c. Use the grouped frequency tables, calculate the cumulative frequencies and prepare cumulative frequency graphs (or ogives)
- d. Introduce simple analysis questions, which can be answered from any of these visual representations, most of which involve percentiles.

(C) Misleading Graphs

You are going to be presented with 4 slides showing statistical information via graphs. You are asked to record your ideas about "What's wrong with this Picture"

Slide #1	Slide #2
Slide #3	Slide #4

(D)<u>Opening Exercise/Review</u> → Below is a frequency table for 3 different classrooms' test scores.

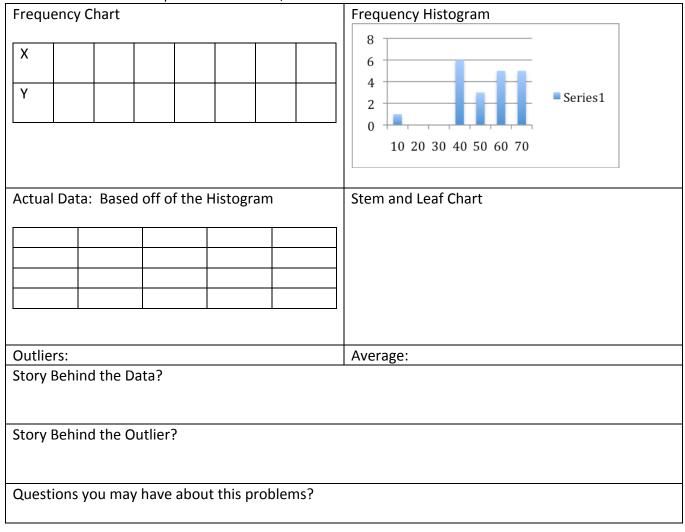
Score			
	Class A	Class B	Class C
0-9	0	0	0
10-19	1	0	1
20-29	0	0	5
30-39	0	0	7
40-49	0	1	2
50-59	1	1	2
60-69	4	2	1
70-79	9	3	1
80-89	3	6	1
90-100	1	4	0

a. How many students are in each class? How do you know?

b. Please create three sets of data that will match the given frequency tables.

Class A						
Class B						
Class C						

c. Create Frequency Bar Graphs for each class.


Class A	Class B	Class C
	Initial Observation for each class.	1
	2 Conclusions for each class.	
2.0	for onch class shout the data and data	collection
3 Questions	for each class about the data, or data	collection.
Circle one for	each class that best describes the data	distribution.
Class A	Class B	Class C
Positively Skewed?	Positively Skewed?	Positively Skewed?
Negatively Skewed?	Negatively Skewed?	Negatively Skewed?
Symmetrical Data?	Symmetrical Data?	Symmetrical Data?

Do any of the data points stand out to you?

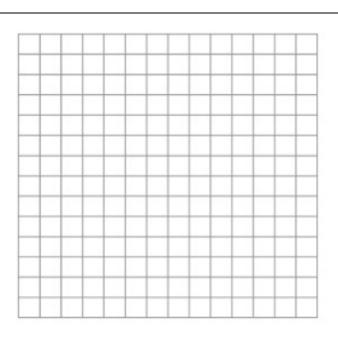
- (A) Outliers
- a. Go online and look up the term "Outlier" Please give a definition of this term in your own words, and then given examples of this term visually, as well as in a set of data.

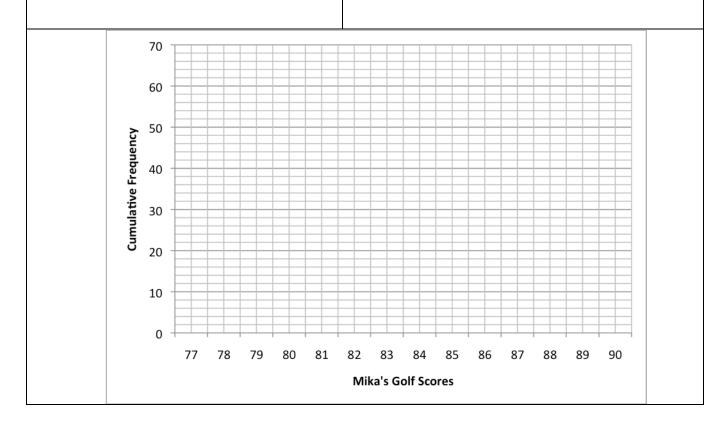
Outlier					
Definition:					
Visual Example	Example with a data set				
'	'				
1					

b. Given the data representation below, fill out the rest of the table.

(E) Frequency Distribution Tables → Example #1

Prepare and use frequency distribution tables (using both frequencies & relative frequencies) to create (i) histographs, (ii) frequency polygons and (iii) cumulative frequency graphs

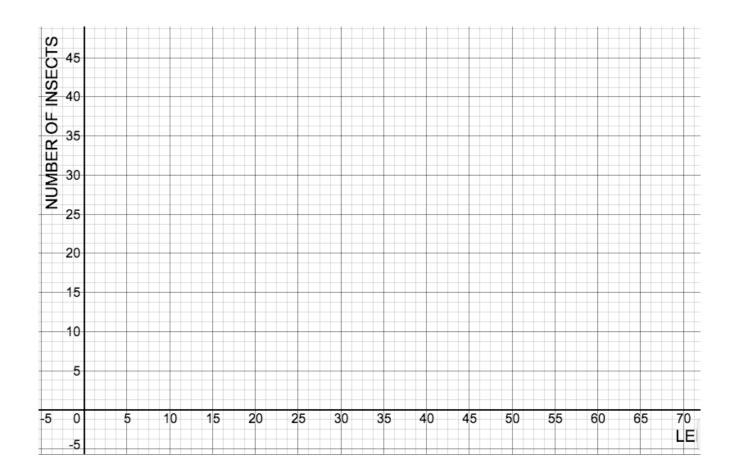

Example #1 – FDT of ages of 200 first year college students at Juan Fine University


age of		cum.		+		+	+		\forall	+		
students 16	number 0	Freq.										
17	3											
18	72											
19	62		-	_		Н	4	-	Н	-		
20	28		-	-		\vdash	+	+	H	+	\vdash	-
21	11		-	+		\vdash	+	+	Н	+	\vdash	-
22	9		-	-	-		-		H			
23	5			+								
24	4					\forall	+		\forall		\Box	
25	6					\Box	\top				П	
							_					

Example #2 – Mika's golf scores this past summer

a. Prepare a Frequency Histogram, frequency Polygon & CFG

		•
		cum.
Mika's Golf Scores	number	Freq.
77	0	
78	1	
79	3	
80	0	
81	5	
82	7	
83	8	
84	9	
85	10	
86	8	
87	7	
88	3	_
89	2	
90	1	

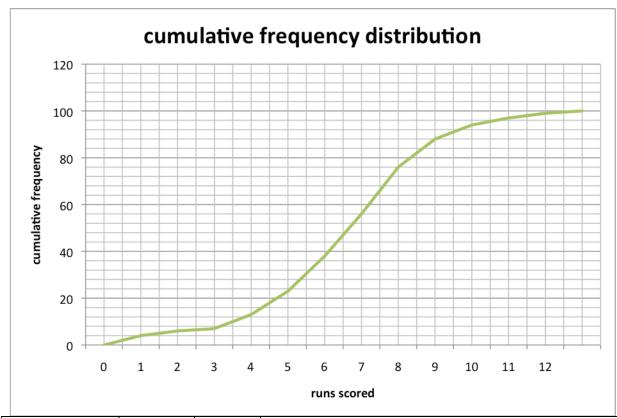


Example 3 - The length of 40 insects of a certain species were measured correct to the nearest millimeter. The frequency distribution is given below:


Lengths (mm)	Frequency (f_i)	Cumulative frequency
25 ≤ L < 30	2	
30 – 35	4	
35 – 40	7	
40 – 45	10	
45 – 50	8	
50 – 55	6	
55 – 60	3	

- a. Construct a cumulative frequency table for the given data.
- b. Draw a cumulative frequency curve for the data.
- c. Estimate from the curve
 - (i) the number of insects that were less than 43.5 mm
 - (ii) the percentage of insects that were of length 37.5 mm or more,
 - (iii) the value of k, if 75% of the insects were less than k mm long.

Example #4 – siblings of students in Mr. S's Grade 10 classes


- a. 55% of the students in Mr S's classes have at least siblings (according to the ogive)
- b. % of the students had at least 3 siblings

Number of		cum.	
children	number	Freq.	
-1	0	0	
0			
1	19		
2		46	
3			
4		55	
5	2		
6			
7		60	
8	0	60	

Example #3 – Runs scored by Mr. Nicols baseball teams at ISM over the years

- a. 43% of the time, Mr. Nicol's baseball teams scored runs (according to the ogive)
- b. In % of the games, the team scored at least 5 runs

Runs in		cum.	Histogram
Baseball Game	number	Freq.	
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

Prepare Histograms & Cumulative Frequency Graphs from the following data sets (each of which show different types of data distributions → Let's say these data sets represent IM2 Final Exam scores from the past 4 years at CAC (Work in Groups of 4 to complete this activity)

IM2 SEM 2 Exam Scores	Frequency Histogram	CFG
0 < M < 10		
$ \begin{array}{c cccc} 0 \le M < 10 & 0 \\ 10 - 20 & 2 \\ 20 - 30 & 3 \\ 30 - 40 & 4 \\ 40 - 50 & 3 \\ 50 - 60 & 6 \\ 60 - 70 & 12 \\ 70 - 80 & 18 \\ 80 - 90 & 33 \\ 90 - 100 & 19 \end{array} $		

$\begin{array}{c cccc} 0 \le M < 10 & 0 \\ 10 - 20 & 11 \\ 20 - 30 & 26 \\ 30 - 40 & 21 \\ 40 - 50 & 15 \\ 50 - 60 & 13 \\ 60 - 70 & 12 \\ 70 - 80 & 2 \\ 80 - 90 & 0 \\ 90 - 100 & 0 \end{array}$	
$\begin{array}{c cccc} 0 \le M < 10 & 2 \\ 10 - 20 & 15 \\ 20 - 30 & 20 \\ 30 - 40 & 12 \\ 40 - 50 & 3 \\ 50 - 60 & 2 \\ 60 - 70 & 10 \\ 70 - 80 & 20 \\ 80 - 90 & 14 \\ 90 - 100 & 2 \end{array}$	