、 /			
BIG PICTURE of this UNIT:	 How can I analyze growth or decay patterns in data sets & contextual problems? How can I algebraically & graphically summarize growth or decay patterns? How can I compare & contrast linear and exponential models for growth and decay problems. 		
CONTEXT of this LESSON:	Where we've been In Lessons 1 & 2 you generated & analyzed data from a variety of activities	Where we are How do we work with equations & situations that model growth & decay patterns	Where we are heading How can I use equations that will help me make predictions about scenarios which feature exponential growth & decay?

(A)<u>Lesson Context</u>

(A) Lesson Objectives:

- a. Write exponential equations to model real world applications
- b. Make predictions/extrapolations through numeric or algebraic analysis
- c. Use multiple representations to solve the exponential equations that arise from real world applications

(B) <u>Review</u> \rightarrow An Exponential equation has the form $Y = C(a)^x$ or $Y = C(1 + r)^x$, where C = initial value, a is the growth factor/common ratio. (It turns out that a = 1 + r, where r is the decimal value of % increase given).

For the following equations, (i) decide if they can be used to model growth or decay and (ii) determine the rate at which the change happens.

Y = 200(1.15) ^x	
Y = 400(0.85) ^x	
Y = 100(2) ^x	
Y = 100(½) [×]	
Y = 200(1.05) ^x	
Y = 400(1.75) [×]	
Y = 100(0.75) ^x	
Y = 100(0.995) [×]	
Y = 1,000(0.30) ^x	
Y = 2500(1.5) ^x	

- (C) <u>Opening Exploration</u> → Mr Santowski has been given a new job contract. He will earn \$40,000 per year and get a raise of 6% of his previous years' salary (i.e his salary grows by 6% per year)
 - a) Define the variables that you will be using to model this problem.
 - b) Graph the function on your TI-84
 - c) Write an equation for Mr. S's salary.
 - d) What does the y-intercept represent?
 - e) What would my salary be in 8 years?
 - f) After how many years would my salary be \$70,000?
 - g) What assumption are you making as you answer Qd,e?
 - h) I would like Mr. S's salary to be modelled with a linear relation. HOW would you change the original info so that a linear model can be used?
- (D)<u>Opening Exploration</u> → Mr Santowski has purchased a new car. It cost \$50,000 but its value depreciates at a rate of 12% raise per year for the next 6 years
 - a) Define the variables that you will be using to model this problem.
 - b) Graph the function on your TI-84.
 - c) Write an equation for the value of Mr. S's car.
 - d) What does the y-intercept represent?
 - e) What would be the value of my car be in 8 years?
 - f) After how many years would the value of my car be \$7,000?
 - g) I would like the value of Mr. S's car to be modelled with a linear relation. HOW would you change the original info so that a linear model can be used?

(E) **Examples:** For each question, show your equation and a sketch of your graph.

- a. A colony of 1,000 ants can increase by 15% in a month.
 - i. How many ants will be in the colony after 10 months?
 - ii. How long will it take to get 7,500 ants in the colony?
- b. A population of 10 hamsters will triple every year.
 - i. What will be the population after 4 years?
 - ii. How long will it take to get 1,500 hamsters?
 - iii. Determine the WEEKLY growth rate for the hamsters.

- c. A baby weighing 7 pounds at birth may increase in weight every month according to the function $W(m) = 7(1.11)^m$.
 - i. How much will the baby weigh after 1 year?
 - ii. When will the baby weigh 18 pounds?
 - iii. Determine the monthly rate of growth for this infant.
 - iv. Determine the approximate DAILY rate of growth for this infant.

- d. A deposit of \$1500 in an account pays interest on the balance annually and the account balance is modeled by the function $B(t) = 1500(1.0725)^t$.
 - i. Determine the yearly rate of increase of the account balance.
 - ii. What is the account balance after 8 years?
 - iii. When will the value of the account be double its original value?

(F) <u>Examples</u>: For each question, show your equation and a sketch of your graph

- A colony of 100,000 ants is infected by a virus and its monthly population is modeled by the following function:
 P(m) = 100000(0.88)^m.
 - i. How many ants will be in the colony after 10 months?
 - ii. How long will it take to get 25,000 ants in the colony?
 - iii. Determine the monthly rate of decrease of ant population.
 - iv. Determine the DAILY death rate for the ant colony.

- b. A sample of 100 g radioactive plutonium-238 has a half-life of 87.7 years, so it will exponentially decay every year.
 - i. Determine the YEARLY decay rate for plutonium.
 - ii. What amount will remain after 400 years?
 - iii. How long will it take to eliminate 95% of the plutonium?

- c. An investment of \$150,000 in an account loses value at a rate of 3.25% annually.
 - i. What is the account balance after 5 years?
 - ii. When will the value of the account be half its original value?

(G)Homework Links: