(A) Lesson Context

BIG PICTURE of this UNIT:	 How can I analyze growth or decay patterns in data sets & contextual problems? How can I algebraically & graphically summarize growth or decay patterns? How can I compare & contrast linear and exponential models for growth and decay problems. 			
CONTEXT of this LESSON:	Where we've been In Lesson 1, you generated data from a variety of activities	Where we are How do we analyze data in order to determine the patterns/relationships exist in data sets that exhibit growth & decay patterns	Where we are heading How can I develop equations that will help me make predictions about scenarios which feature exponential growth & decay?	

(B) Lesson Objectives:

- a. Generate data through various hands-on activities
- b. Analyze the data to look for patterns in the data that was generated
- c. Make predictions/extrapolations through numeric or algebraic analysis

(C) Fast Five

For problems 1 through 36, rewrite without zero or negative exponents.

1.
$$4^{-3} =$$

2.
$$-5^{-2} =$$

3.
$$5^0 =$$

4.
$$10^{-2} =$$

5.
$$-4^{-3} =$$

7.
$$\frac{1}{2^{-2}}$$
 =

8.
$$\frac{1}{4^0}$$
 =

9.
$$(-3)^{-2}$$
 =

17.
$$-3^0 =$$

18.
$$8x^0y^{-3} =$$

19.
$$(-3)^{-3} =$$

20.
$$\left(\frac{1}{2}\right)^{-1} =$$

21.
$$\left(\frac{1}{2}\right)^{-2} =$$

22.
$$\left(\frac{1}{3}\right)^{-1} =$$

24.
$$(-5)^0 =$$

25.
$$(-1)^{-2}$$
 =

37.
$$y^{-3}$$
 for $y=2$

38.
$$y^{-3}$$
 for $y = \frac{1}{2}$

39.
$$2x^{-4}y^{-1}$$
 for $x = 2$, $y = \frac{1}{3}$

40.
$$(x+3)^{-2}$$
 for $x=-4$

41.
$$x^{-y}$$
 for $x = -2$, $y = 2$

42.
$$(x^4y^2)^0$$
 for $x = \frac{4}{3}$, $y = -\frac{2}{7}$

43.
$$x^y x^{-y}$$
 for $x = \frac{2}{5}$, $y = -\frac{4}{3}$

DATA SET ANALYSIS #1

Data Set #1 \rightarrow {1,2,4,8,16,32,64,....} \rightarrow and as a data table \rightarrow

Х	0	1	2	3	4	5	6
У	1	2	4	8	16	32	64

Describe the pattern in words

MATH ANALYSIS → Common Ratio

Option #1:
To calculate the common ratio, we will divide successive y values.

$$ratio = \frac{y_2}{y_1} = \frac{y_3}{y_2} = \frac{y_4}{y_3} = \frac{y_5}{y_4}$$
 etc \Rightarrow observation?

Which leads to an equation \rightarrow y = ab^x

MATH ANALYSIS → Percent Change

Option #2: > To calculate the percentage, we will calculate the percent change for each trial using the formula below.

percentage change =
$$r = \frac{y_2 - y_1}{y_1} = \frac{y_3 - y_2}{y_2} = \frac{y_4 - y_3}{y_3} = \frac{y_5 - y_4}{y_4} = \text{ etc } \dots$$
 \Rightarrow observation?

Which leads to an equation \rightarrow y = a(1+r)^x \rightarrow

DATA SET ANALYSIS #2

Data Set #2 \rightarrow {5,10,20,40,80,160,320,....} \rightarrow as a data table \rightarrow

Х	0	1	2	3	4	5	6
У	5	10	20	40	80	160	320

Describe the pattern in words

MATH ANALYSIS → Common Ratio

Option #1:
To calculate the common ratio, we will divide successive y values.

$$ratio = \frac{y_2}{y_1} = \frac{y_3}{y_2} = \frac{y_4}{y_3} = \frac{y_5}{y_4}$$
 etc \Rightarrow observation?

Which leads to an equation \rightarrow y = ab^x

MATH ANALYSIS → Percent Change

Option #2: > To calculate the percentage, we will calculate the percent change for each trial using the formula below.

percentage change =
$$r = \frac{y_2 - y_1}{y_1} = \frac{y_3 - y_2}{y_2} = \frac{y_4 - y_3}{y_3} = \frac{y_5 - y_4}{y_4} = \text{ etc } \dots$$
 \Rightarrow observation?

Which leads to an equation \rightarrow y = a(1+r)^x \rightarrow

DATA SET ANALYSIS #3

Year	Population
1700	250
1750	370
1800	560
1850	840
1900	1270
1950	1900
2000	2850

MATH ANALYSIS → Common Ratio

Option #1: → To calculate the common ratio, we will divide successive y values.

Calculate the average of ALL the ratios:

Which leads to an equation \rightarrow y = ab^x

MATH ANALYSIS → Percent Change

Option #2: → To calculate the percentage, we will calculate the percent change for each trial using the formula below.

Calculate the average of ALL the percents:

Which leads to an equation \rightarrow y = a(1+r)^x \rightarrow

(D) <u>Data Analysis</u> Part I: <u>Modeling Exponential Data</u>

The value of Mr S car is depreciating over time. I bought the car new in 2002 and the value of my car (in thousands) over the years has been tabulated below:

Year	Value
2002	40
2003	36
2004	32.4
2005	29.2
2006	26.2
2007	23.6
2008	21.3
2009	19.1
2010	17.2

MATH ANALYSIS → Common Ratio

Option #1: → To calculate the common ratio, we will divide successive y values.

Calculate the average of ALL the ratios:

Which leads to an equation \rightarrow y = ab^x

MATH ANALYSIS → Percent Change

Option #2: → To calculate the percentage, we will calculate the percent change for each trial using the formula below.

Calculate the average of ALL the percents:

Which leads to an equation \rightarrow y = a(1+r)^x \rightarrow

(E) <u>DATA ANALYSIS</u> → Part II: Modeling Exponential Data

The following data table shows the historic world population since 1950:

on

MATH ANALYSIS → Common Ratio

Option #1: → To calculate the common ratio, we will divide successive y values.

Calculate the average of ALL the ratios:

Which leads to an equation \rightarrow y = ab^x

MATH ANALYSIS → Percent Change

Option #2: → To calculate the percentage, we will calculate the percent change for each trial using the formula below.

Calculate the average of ALL the percents:

Which leads to an equation \rightarrow y = a(1+r)^x \rightarrow