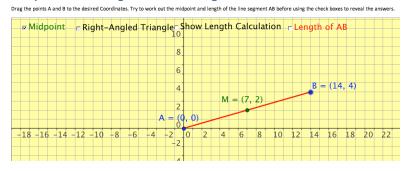
(A) Lesson Context

BIG PICTURE of this UNIT:	 mastery with algebraic skills to be used in our work with co-ordinate geometry (midpoint, length, slope) understanding various geometric properties of quadrilaterals & triangles how do you really prove that something is "true"? 			
CONTEXT of this LESSON:	Where we've been In MS, you have been taught about various types of geometric figures like quadrilaterals & triangles	Where we are Becoming proficient with one analytical tool that we can use in co-ordinate geometry → midpoint	Where we are heading How can I prove various geometric properties of quadrilaterals and triangles?	


(B) Lesson Objectives:

- a. Exploring the midpoint of a line segment through dynamic geometry software (geogebra)
- b. Develop proficiency in analytic/algebraic determination of midpoints of line segments
- c. Apply the use of midpoints to problem solving questions

(C) Exploring Midpoint – through dynamic geometry software: geogebra

Open Firefox, Explorer, Safari (but NOT CHROME) - Using the following dynamic geometry applet (http://www.geogebratube.org/student/m12412), (you may have to download JAVA) let's explore the midpoint

> i. Point A is fixed at (0,0) and move Point B → Record position of Point B and then aslo record the position of the midpoint \rightarrow Q? how can you predict where the midpoint should be? Midpoint and Length of a Line Segment

Point A	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
Point B	(14,4)						
Midpoint							

ii. Now Point A will also move and you will also move Point B → Record position of Points A and B and then aslo record the position of the midpoint \rightarrow Q? how can you predict where the midpoint should be?

Point A	(2,5)	(3,6)	(-5,-4)	(-2,-8)	(3,7)	(-2,9)	(0,-7)
Point B	(4,7)	(0,-2)	(7,-1)	(-8,6)	(-4,2)	(-6,2)	(5,0)
Midpoint							

Q? how can you predict where the midpoint should be?

iii. Now Point A will be fixed at (16,-8) and you will have to move Point B to get to the requested midpoint \rightarrow Record the final position B \rightarrow Q? how can you predict where Point B should be?

Point A	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)
Midpoint	(0,0)	(6,-1)	(9,-6)	(12,0)	(0,-3)	(4.5,-4)	(8.5,1.5)
Point B							

Q? how can you predict where Point B should be?

(D) Working with the Formula

a. The formula to find the midpoint between two points on a graph is

$$(x,y)$$
 of midpoint $=$ $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

- i. Determine the midpoint of the line segment between A(1,1) and B(5,9)
- ii. Determine the midpoint of the line segment between A(-1,1) and B(5,5)
- iii. Determine the midpoint of the line segment between A(-2,6) and B(3,-4)
- iv. Determine the midpoint of the line segment between A(1,-2) and B(8,-2)

Lesson 1: Midpoint of a Line Segment | Unit 2 – Co-ordinate Geometry

b.	A line segment has an endpoint at $A(5,2)$ and midpoint at $M(9,-3)$. Determine the co-ordinates of the
	other endpoint. Show the algebraic reasoning/work that leads to your conclusion.

- c. On the design plan for a landscaping project, a straight path runs from (11,29) to (53,9). A light is going to be placed halfway along the path.
 - 1. Draw a diagram that shows the path.
 - 2. Determine the co-ordinates of the lamp on your diagram
 - 3. The one lamp is not bright enough to illuminate the pathway. So two more lamps will be placed along the path, such that each lamp is placed a quarter of the distance of the path. Determine the coordinates of the other two lamps.

d. A perpendicular bisector of a line segment is a second line that will (i) cut the line segment in half and (ii) be perpendicular to the original line segment (see diagram). A line segment ends at the points C(-2,0)and D(4,-4). Determine the equation for the perpendicular bisector of line segment CD.

(E) Homework/Resources

Nelson 10 Chap 2.1 - Midpoint of a Line Segment, p78-80, Q4-7