# Review of Exponential Relations

Integrated Math 2

Integrated Math 2 - Santowski

## Concepts to Know - From Video Notes/ HW & Lesson Notes

- Zero and Integer Exponents
- Exponent Laws
- Scientific Notation
- Analyzing Data Sets (M&M Lab & HW/video HW)
- ▶ Word Problems Modeling with Exponential Relations
- ► Graphing Exponential Graphs with & without Calculator

2/17/14

Solving Exponential Equations

# Key formulas

Basic Formula with RATIOS:  $y = C(a)^x$ 

Basic Formula with RATES:  $y = C(1+r)^x$ 

Compound Interest Formula:  $FV = PV \left(1 + \frac{r}{n}\right)^{nt}$ 

Doubling Formula:  $y = C(2)^{\frac{t}{D}}$ Half Life Formula:  $y = C\left(\frac{1}{2}\right)^{\frac{t}{H}}$ 

# **Equations from Data Sets**

Determine an equation to model these data sets

| X | 0 | 1  | 2  | 3  | 4  | 5   | 6   |
|---|---|----|----|----|----|-----|-----|
| у | 5 | 10 | 20 | 40 | 80 | 160 | 320 |

| X | 4 | 5  | 6  | 7  | 8  | 9   | 10  |
|---|---|----|----|----|----|-----|-----|
| у | 5 | 10 | 20 | 40 | 80 | 160 | 320 |

Integrated Math 2 - Santowski

2/17/14

► The following data table shows the relationship between the time (in hours after a rain storm in Manila) and the number of bacteria (#/mL of water) in water samples from the Pasig River:

| Time (hours) | # of Bacteria |  |  |  |  |
|--------------|---------------|--|--|--|--|
| 0            | 100           |  |  |  |  |
| 1            | 196           |  |  |  |  |
| 2            | 395           |  |  |  |  |
| 3            | 806           |  |  |  |  |
| 4            | 1570          |  |  |  |  |
| 5            | 3154          |  |  |  |  |
| 6            | 6215          |  |  |  |  |
| 7            | 12600         |  |  |  |  |
| 8            | 25300         |  |  |  |  |

- (a) Graph the data on a scatter plot
- ▶ (b) How do you know the data is exponential rather than quadratic?
- ▶ (c) How can you analyze the numeric data (no graphs) to conclude that the data is exponential?
- ▶ (d) Write an equation to model the data. Define your variables carefully.

Integrated Math 2 - Santowski

► The value of Mr S car is depreciating over time. I bought the car new in 2002 and the value of my car (in thousands) over the years has been tabulated below:

| Year  | 200 | 200 | 200  | 200  | 200  | 200  | 200  | 200  | 201  |
|-------|-----|-----|------|------|------|------|------|------|------|
|       | 2   | 3   | 4    | 5    | 6    | 7    | 8    | 9    | 0    |
| Value | 40  | 36  | 32.4 | 29.2 | 26.2 | 23.6 | 21.3 | 19.1 | 17.2 |

- (a) Graph the data on a scatter plot
- ▶ (b) How do you know the data is exponential rather than quadratic?
- (c) How can you analyze the numeric data (no graphs) to conclude that the data is exponential?
- ▶ (d) Write an equation to model the data. Define your variables carefully.

Integrated Math 2 - Santowski

▶ The following data table shows the historic world population since 1950:

| Year              | 1950 | 1960 | 197<br>0 | 1980 | 1990 | 1995  | 2000 | 2005 | 2010 |
|-------------------|------|------|----------|------|------|-------|------|------|------|
| Pop (in millions) | 2.56 | 3.04 | 3.71     | 4.45 | 5.29 | 5.780 | 6.09 | 6.47 | 6.85 |

- (a) Graph the data on a scatter plot
- ▶ (b) How do you know the data is exponential rather than quadratic?
- (c) How can you analyze the numeric data (no graphs) to conclude that the data is exponential?
- (d) Write an equation to model the data. Define your variables carefully.

# Review of Exponent Laws

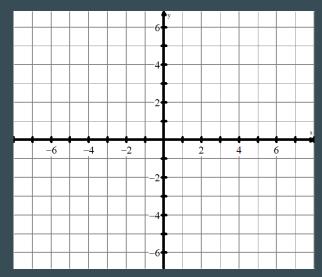
- product of powers: 3<sup>4</sup> x 3<sup>6</sup>
  3<sup>4</sup> x 3<sup>6</sup> = 3<sup>4+6</sup> → add exponents if bases are equal
- p quotient of powers: 3<sup>9</sup> ÷ 3<sup>2</sup>
  ⇒ 3<sup>9</sup> ÷ 3<sup>2</sup> = 3<sup>9 2</sup> ⇒ subtract exponents if bases are equal
- power of a power: (3²)⁴
  (3²)⁴ = 3² x ⁴ → multiply powers
- power of a product: (3 x a)<sup>5</sup>
- (3 x a)<sup>5</sup> = 3<sup>5</sup> x a<sup>5</sup> = 243a<sup>5</sup>  $\rightarrow$  distribute the exponent
- ▶ power of a quotient: (a/3)<sup>5</sup>
- $(a/3)^5 = a^5 \div 3^5 = a^5/243 \Rightarrow \text{distribute the exponent}$ Integrated Math 2 Santowski

# Examples

- ex 1. Simplify the following expressions:
  (i) (3a²b)(-2a³b²)

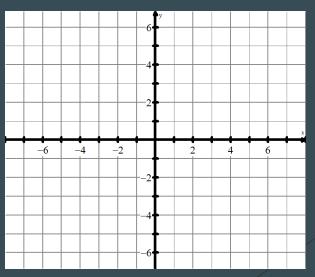
- $(iii) (-4p^3q^2)^3$
- ex 2. Simplify  $(6x^5y^3/8y^4)^2$
- ex 3. Simplify (-6x<sup>-2</sup>y)(-9x<sup>-5</sup>y<sup>-2</sup>) / (3x<sup>2</sup>y<sup>-4</sup>) and express answer with positive exponents
- ex 4. Evaluate the following (i) (3/4)-2

- $(-6)^{0} / (2^{-3})$  $(2^{-4} + 2^{-6}) / (2^{-3})$


#### **Scientific Notation**

http://www.kutasoftware.com/FreeWorksheets/Alg1Worksheets/Writing %20Scientific%20Notation.pdf

# **Graphs of Exponential Relations**


Graph  $y = -(2)^{x} + 3$ 

Label three points & the asymptote & state range



Graph  $y = 5(0.5)^x - 2$ 

Label three points & the asymptote & state range



Integrated Math 2 - Santowski

2/17/14

#### (E) Solving Strategies - Algebraic Solution #1

- This prior observation sets up our general equation solving strategy => get both sides of an equation expressed in the same base
- ex. Solve and verify the following:

(a) 
$$(\frac{1}{2})^x = 4^{2-x}$$
 (b)  $3^{y+2} = \frac{1}{27}$ 

$$3^{y+2} = 1/27$$

$$(c)$$
  $(1/16)^{2a-3} = (1/4)^{a+3} (d) 3^{2x} = 81$ 

$$\triangleright$$
 (e)  $5^{2x-1} = 1/125$ 

(e) 
$$5^{2x-1} = 1/125$$
 (f)  $36^{2x+4} = \sqrt{(1296^x)}$ 

# Compound Interest

| (a) \$4000 borrowed for 4 years at 3%/a, compounded annually      | (b) \$7500 invested for 6 years at 6%/a, compounded monthly           |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|
| (c) \$15 000 borrowed for 5 years at 2.4%/a, compounded quarterly | (d) \$28 200 invested for 10 years at 5.5%/a, compounded semiannually |
| (e) \$850 financed for 1 year at 3.65%/a, compounded daily        | (f) \$2225 invested for 47 weeks at 5.2%/a, compounded weekly         |

## Working with Exponential Models

- Populations can also grow exponentially according to the formula  $P = P_o(1.0125)^n$ . If a population of 4,000,000 people grows according to this formula, determine:
- ▶ 1. the population after 5 years
- ▶ 2. the population after 12.25 years
- ▶ 3. when will the population be 6,500,000
- ▶ 4. what is the average annual rate of increase of the population

Integrated Math 2 - Santowski

2/17/14

## Working with Exponential Models

- ► The value of a car depreciates according to the exponential equation  $V(t) = 25,000(0.8)^t$ , where t is time measured in years since the car's purchase. Determine:
- ▶ 1. the car's value after 5 years
- ▶ 2. the car's value after 7.5 years
- ▶ 3. when will the car's value be \$8,000
- ▶ 4. what is the average annual rate of decrease of the car's value?

Integrated Math 2 - Santowski

2/17/14

# **Examples with Applications**

Example 1 → Radioactive materials decay according to the formula N(t) = N<sub>0</sub>(1/2)<sup>t/h</sup> where N<sub>0</sub> is the initial amount, t is the time, and h is the half-life of the chemical, and the (1/2) represents the decay factor. If Radon has a half life of 25 days, how long does it take a 200 mg sample to decay to 12.5 mg?

# **Examples with Applications**

► Example 2 → A bacterial culture doubles in size every 25 minutes. If a population starts with 100 bacteria, then how long will it take the population to reach 2,000,000?

# **Examples with Applications**

ex 3. The half-life of radium-226 is 1620 a. Starting with a sample of 120 mg, after how many years is only 40 mg left?

ex 4. Find the length of time required for an investment of \$1000 to grow to \$4,500 at a rate of 9% p.a. compounded quarterly.

Integrated Math 2 - Santowski

2/17/14