(A) Lesson Context

BIG PICTURE of this UNIT:	 How do we analyze and then work with a data set that shows both increase and decrease What is a parabola and what key features do they have that makes them useful in modeling applications How do I use graphs, data tables and algebra to analyze quadratic equations? 		
CONTEXT of this LESSON:	Where we've been In Lesson 6, you were factoring quadratics in order to find the zeroes and other key features of a parabola	Where we are We will now solve quadratic equations, wherein we ultimately need to use the process of factoring	Where we are heading How can I use EQUATIONS to make predictions about parabolas and quadratic data sets & quadratic models

(B) Lesson Objectives:

- a. Review & practice the algebraic skills of expanding and factoring
- b. Use the skills of factoring and expanding in solving equations and contextual problems

(C) Solving Quadratic Equations

Example 1: Given the quadratic relation $y = x^2 - 8x + 12$;

- a. Sketch a graph of this parabola and label all key points/features.
- b. Solve $0 = x^2 8x + 12$. What does your solution mean?
- c. Solve $-3 = x^2 8x + 12$. What does your solution mean?
- d. Solve $5 + 8x = x^2 + 12$. What does your solution mean?

Example 2: Given the quadratic relation $y = 6x^2 + x - 15$

a. Factor
$$y = 6x^2 + x - 15$$

b. Solve
$$0 = 6x^2 + x - 15$$

c. Solve
$$36 = 6x^2 + x - 15$$

- d. Graph $y = 6x^2 + x 15$ and determine the zeroes. How does your GRAPH verify that your algebra in parts a,b,c has been done correctly?
- e. Using your graphing calculator to find the vertex and then rewrite the equation in VERTEX FORM.

Problem Solving with Quadratic Equations Unit 5 Lesson 7

Example 3: Given the quadratic relation $y = 6x^2 + 5x - 4$

Example 4: Given the quadratic relation $y = 2x^2 - 20x + 50$

a. Factor
$$y = 6x^2 + 5x - 4$$

b. Solve
$$0 = 6x^2 + 5x - 4$$

c. Solve
$$65 = 6x^2 + 5x - 4$$

- d. Graph $y = 6x^2 + 5x 4$ and determine the zeroes. How does your GRAPH verify that your algebra in parts a,b,c has been done correctly?
- e. Using your graphing calculator to find the vertex and then rewrite the equation in VERTEX FORM.

a. Factor
$$y = 2x^2 - 20x + 50$$

b. Solve
$$0 = 2x^2 - 20x + 50$$

c. Solve
$$72 = 2x^2 - 20x + 50$$

- d. Graph $y = 2x^2 20x + 50$ and determine the zeroes. How does your GRAPH verify that your algebra in parts a,b,c has been done correctly?
- e. Using your graphing calculator to find the vertex and then rewrite the equation in VERTEX FORM.

(D)Key to SOLVING EQUATIONS:

(E) Modeling with Quadratic Equations

Mr Santowski runs a clothing business and models how his revenues on sales of denim jeans are related to price changes. He uses the quadratic equation $R = 300 + 20x - x^2$, where R represents his daily revenue in dollars and x represents an increase or decrease in price. (So x = +1 represents a price increase of 1 dollar and x = -2represents a price decrease of 2 dollars)

- a. Determine the price change that will result in maximum revenues. What is the maximum revenue
- b. Factor the equation $R = 300 + 20x x^2$.
- c. Solve the equation $0 = 300 + 20x x^2$ and interpret what the answers mean, given the context.
- d. Solve the equation $300 = 300 + 20x x^2$ and interpret what the answers mean, given the context.
- e. Make a sketch of the relation.
- f. Solve the equation $375 = 300 + 20x x^2$ and interpret what the answers mean, given the context
- g. Solve the equation $144 = 300 + 20x x^2$ and interpret what the answers mean, given the context